Redução do custo computacional do processo de otimização baseada em simulação utilizando redes neurais aplicadas a um problema de consumo energético com sistemas de condicionamento artificial
DOI:
https://doi.org/10.46421/entac.v19i1.2122Palavras-chave:
Redes neurais, Algoritmos genéticos, Simulação computacional, Avaliação do desempenho, GrasshopperResumo
Processos de otimização baseada em simulação (OBS) são capazes de melhorar o desempenho de edificações. A combinação de OBS a métodos de aprendizado de máquina surge como uma alternativa, capaz de reduzir o custo computacional do processo sem perder a robustez das soluções. Este trabalho utilizou redes neurais associadas a um processo de OBS mono-objetivo para minimizar o consumo com sistemas de resfriamento, aquecimento e iluminação artificial em um edifício de escritórios por meio de modificações da envoltória. Os resultados apontaram uma redução significativa do custo computacional, em situações que permitem a redução de até 50% das simulações.
Referências
OXMAN, R. Thinking difference: Theories and models of parametric design thinking. Design Studies, v. 52, p. 4–39, 2017. Disponível em: <http://dx.doi.org/10.1016/j.destud.2017.06.001>.
FAROUK, A.; ELDALY, H.; DEWIDAR, K. Parametric Design As a Tool for Performative Architecture. Journal of Al-Azhar University Engineering Sector, v. 14, n. 50, p. 148–157, 2019.
KHEIRI, F. A review on optimization methods applied in energy-efficient building geometry and envelope design. Renewable and Sustainable Energy Reviews, v. 92, n. May 2017, p. 897–920, 2018. Disponível em: <https://doi.org/10.1016/j.rser.2018.04.080>.
SEYEDZADEH, S.; POUR RAHIMIAN, F.; RASTOGI, P.; GLESK, I. Tuning machine learning models for prediction of building energy loads. Sustainable Cities and Society, v. 47, n. March, p. 101484, 2019. Disponível em: <https://doi.org/10.1016/j.scs.2019.101484>.
MILLER, C.; ARJUNAN, P.; KATHIRGAMANATHAN, A.; FU, C.; ROTH, J.; PARK, J. Y.; et al. The ASHRAE Great Energy Predictor III competition: Overview and results. Science and Technology for the Built Environment, v. 26, n. 10, p. 1427–1447, 2020. Disponível em: <https://doi.org/10.1080/23744731.2020.1795514>.
MELO, A. P.; CÓSTOLA, D.; LAMBERTS, R.; HENSEN, J. L. M. Development of surrogate models using artificial neural network for building shell energy labelling. Energy Policy, v. 69, p. 457–466, 2014. Disponível em: <http://dx.doi.org/10.1016/j.enpol.2014.02.001>.
CARLO, J.; LAMBERTS, R. Development of envelope efficiency labels for commercial buildings: Effect of different variables on electricity consumption. Energy and Buildings, v. 40, n. 11, p. 2002–2008, 2008. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0378778808001114>.
WETTER, M.; WRIGHT, J. A comparison of deterministic and probabilistic optimization algorithms for nonsmooth simulation-based optimization. Building and Environment, v. 39, n. 8, p. 989–999, 2004. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0360132304000332>.
WAIBEL, C.; WORTMANN, T.; EVINS, R.; CARMELIET, J. Building energy optimization: An extensive benchmark of global search algorithms. Energy and Buildings, v. 187, p. 218–240, 2019. Disponível em: <https://doi.org/10.1016/j.enbuild.2019.01.048>.
RUTTEN, D. Galapagos: On the logic and limitations of generic solvers. Architectural Design, v. 83, n. 2, p. 132–135, 2013.