Durabilidade de concretos produzidos com substituição de areia por rejeito de minério de ferro

Autores

DOI:

https://doi.org/10.46421/entac.v20i1.5921

Palavras-chave:

Concreto, Rejeito de Minério de Ferro (RMF), Durabilidade, Sustentabilidade

Resumo

A substituição de areia por rejeito de minério de ferro (RMF) visa contribuir para a sustentabilidade na construção civil e reduzir o impacto ambiental da mineração. O estudo produziu e ensaiou espécimes de referência e com substituição de 30% e de 50% para as idades de 7 e 28 dias. Foram realizados ensaios de absorção de água (Abs), índice de vazios (ivazios), carbonatação acelerada e ataque ácido. Os experimentos mostraram que, para a resistência mecânica, a substituição de 30% implica em ganhos de até 1/3 em comparação à referência, enquanto a substituição de 50% apresentou perdas de até 30% na resistência. A incorporação de RMF apresentou menor ganho de massa para a carbonatação com 30% de substituição, assim como menor (Abs) e (ivazios), mas a perda de massa no ataque ácido foi maior nessa faixa de substituição. O estudo sugere que o RMF é uma alternativa viável para a sustentabilidade, dada a capacidade de reduzir a extração de recursos naturais, com potencial para mudanças significativas no consumo de materiais convencionais e na gestão de resíduos de mineração.

Biografia do Autor

Lucas Thadeu da Silva Ramos, CEFET-MG

Mestre em Engenharia Civil pelo CEFET-MG (2021). Doutorando em Engenharia Civil pelo CEFET-MG (2023).

André Barroso Mourão, CEFET-MG

Mestre em Engenharia Civil (CEFET-MG). Técnico de laboratório do CEFET-MG, Departamento de Engenharia Civil.

Ivan Batista Morais, CEFET-MG

Engenheiro Civil (2024). Técnico de laboratório do CEFET-MG, Departamento de Engenharia Civil.

Hélvius de Castro Bicalho Ferreira, CEFET-MG

Bacharel em Engenharia de Produção Civil pelo CEFET-MG.

Augusto Cesar da Silva Bezerra, CEFET-MG

Doutor em Engenharia Metalúrgica e de Minas pela Universidade Federal de Minas Gerais (2012). Professor efetivo do CEFET-MG.

Flávia Spitale Jacques Poggiali, CEFET-MG

Doutor em Engenharia Metalúrgica e de Minas pela Universidade Federal de Minas Gerais (2012). Professora efetiva do CEFET-MG.

Referências

Brasil, “Relatório Nacional Voluntário sobre os Objetivos do Desenvolvimento Sustentável,” Brasilia, 2017. [Online]. Available: https://sustainabledevelopment.un.org/content/documents/15801Brazil_Portuguese.pdf

K. Liu et al., “Effect of iron ore tailings industrial by-product as eco-friendly aggregate on mechanical properties, pore structure, and sulfate attack and dry-wet cycles resistance of concrete,” Case Stud. Constr. Mater., vol. 17, 2022, doi: 10.1016/j.cscm.2022.e01472.

L. T. da Silva Ramos, R. C. de Azevedo, A. C. da Silva Bezerra, L. M. do Amaral, and R. D. Oliveira, “Iron ore tailings as a new product: A review-based analysis of its potential incorporation capacity by the construction sector,” Clean. Waste Syst., vol. 7, 2024, doi: 10.1016/j.clwas.2024.100137.

Z. Ma, J. Shen, C. Wang, and H. Wu, “Characterization of sustainable mortar containing high-quality recycled manufactured sand crushed from recycled coarse aggregate,” Cem. Concr. Compos., vol. 132, 2022, doi: 10.1016/j.cemconcomp.2022.104629.

H. Wu, R. Hu, D. Yang, and Z. Ma, “Micro-macro characterizations of mortar containing construction waste fines as replacement of cement and sand: A comparative study,” Constr. Build. Mater., vol. 383, 2023, doi: 10.1016/j.conbuildmat.2023.131328.

X. Huang, R. Ranade, and V. C. Li, “Feasibility Study of Developing Green ECC Using Iron Ore Tailings Powder as Cement Replacement,” J. Mater. Civ. Eng., vol. 25, no. 7, pp. 923–931, 2013, doi: 10.1061/(asce)mt.1943-5533.0000674.

X. Huang, R. Ranade, W. Ni, and V. C. Li, “Development of green engineered cementitious composites using iron ore tailings as aggregates,” Constr. Build. Mater., vol. 44, pp. 757–764, 2013, doi: 10.1016/j.conbuildmat.2013.03.088.

L. Weishi, L. Guoyuan, X. Ya, and H. Qifei, “The properties and formation mechanisms of eco-friendly brick building materials fabricated from low-silicon iron ore tailings,” J. Clean. Prod., vol. 204, pp. 685–692, 2018, doi: 10.1016/j.jclepro.2018.08.309.

M. M. Arbili, M. Alqurashi, A. Majdi, J. Ahmad, and A. F. Deifalla, “Concrete Made with Iron Ore Tailings as a Fine Aggregate: A Step towards Sustainable Concrete,” Materials (Basel)., vol. 15, no. 18, 2022, doi: 10.3390/ma15186236.

A. U. Shettima, M. W. Hussin, Y. Ahmad, and J. Mirza, “Evaluation of iron ore tailings as replacement for fine aggregate in concrete,” Constr. Build. Mater., vol. 120, pp. 72–79, 2016, doi: 10.1016/j.conbuildmat.2016.05.095.

M. Yellishetty, V. Karpe, E. H. Reddy, K. N. Subhash, and P. G. Ranjith, “Reuse of iron ore mineral wastes in civil engineering constructions: A case study,” Resour. Conserv. Recycl., vol. 52, no. 11, pp. 1283–1289, 2008, doi: 10.1016/j.resconrec.2008.07.007.

W. Zhang, X. Gu, J. Qiu, J. Liu, Y. Zhao, and X. Li, “Effects of iron ore tailings on the compressive strength and permeability of ultra-high performance concrete,” Constr. Build. Mater., vol. 260, 2020, doi: 10.1016/j.conbuildmat.2020.119917.

S. Zhao, J. Fan, and W. Sun, “Utilization of iron ore tailings as fine aggregate in ultra-high performance concrete,” Constr. Build. Mater., vol. 50, pp. 540–548, 2014, doi: 10.1016/j.conbuildmat.2013.10.019.

R. Mandal, S. K. Panda, and S. Nayak, “Rheology of Concrete: Critical Review, recent Advancements, and future prospectives,” Constr. Build. Mater., vol. 392, 2023, doi: 10.1016/j.conbuildmat.2023.132007.

C. S. N. (CSN), “Cimentos,” CSN, 2023. https://www.csn.com.br/homepage/cimentos/ (accessed Apr. 15, 2024).

ABNT, “NBR 16605: Cimento Portland e outros materiais em pó — Determinação da massa específica,” 2017.

ABNT, “NBR 11579: Cimento Portland — Determinação do índice de finura por meio da peneira 75 µm (no 200),” 2012.

ABNT, “NBR 17054: Agregados - Determinação da composição granulométrica - Método de ensaio,” 17054, 2022

ABNT, “NBR NM 52: Agregado miúdo - Determinação de massa específica e massa específica aparente,” NM 52, 2021

ABNT, “NBR NM 16917: Agregado graúdo - Determinação da densidade e da absorção de água,” 16917, 2021

ABNT, “NBR 6458: Grãos de pedregulho retidos na peneira de abertura 4,8 mm - Determinação da massa específica, da massa específica aparente e da absorção de água,” 6458, 2016

ABNT, “NBR 9604: Abertura de poço e trincheira de inspeção em solo, com retirada de amostras deformadas e indeformadas — Procedimento,” 9604, 2024

ABNT, “NBR 6457: Solos — Preparação de amostras para ensaios de compactação, caracterização e determinação do teor de umidade,” 6457, 2024

N. C. N. Faria, V. M. Pereira, T. R. S. Nobre, R. Cesar de O. Romano, A. C. Vieira Coelho, and S. C. Angulo, “Clinker Portland with iron ore tailing and its characterization by integrated laboratory methods,” Constr. Build. Mater., vol. 402, 2023, doi: 10.1016/j.conbuildmat.2023.132958.

ABCP, “Método de dosagem de concreto,” ABCP, 2020. https://abcp.org.br/wp-content/uploads/2020/07/Metodo_Dosagem_Concreto_ABCPonLINE_22.07.2020.pdf (accessed Aug. 15, 2020).

ABNT, “NBR 5739: Concreto - Ensaio de compressão de corpos de prova cilíndricos,” 5739, 2018

ABNT, “NBR 9778: Argamassa e concreto endurecidos - Determinação da absorção de água, índice de vazios e massa específica,” 9778, 2005

H. C. Gomes, E. D. Reis, R. C. de Azevedo, C. de S. Rodrigues, and F. S. J. Poggiali, “Carbonation of Aggregates from Construction and Demolition Waste Applied to Concrete: A Review,” Buildings, vol. 13, no. 4, 2023, [Online]. Available: https://www.mdpi.com/2075-5309/13/4/1097

L. Li and M. Wu, “An overview of utilizing CO2for accelerated carbonation treatment in the concrete industry,” J. CO2 Util., vol. 60, 2022, doi: 10.1016/j.jcou.2022.102000.

E. D. Reis et al., “Assessment of physical and mechanical properties of concrete with carbon nanotubes pre-dispersed in cement,” J. Build. Eng., vol. 89, 2024, doi: 10.1016/j.jobe.2024.109255.

Z.-X. Tian, Z.-H. Zhao, C.-Q. Dai, and S.-J. Liu, “Experimental Study on the Properties of Concrete Mixed with Iron Ore Tailings,” Adv. Mater. Sci. Eng., vol. 2016, 2016, doi: 10.1155/2016/8606505.

F. A. P. Recena, Retração do Concreto, 1st ed. Porto Alegre: EDIPUCRS, 2023.

D. Xuan, B. Zhan, and C. S. Poon, “Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates,” Cem. Concr. Compos., vol. 65, pp. 67–74, 2016, doi: 10.1016/j.cemconcomp.2015.10.018.

B. Zhan, C. S. Poon, Q. Liu, S. Kou, and C. Shi, “Experimental study on CO2 curing for enhancement of recycled aggregate properties,” Constr. Build. Mater., vol. 67, pp. 3–7, 2014, doi: 10.1016/j.conbuildmat.2013.09.008.

Y. M. Carvalho, B. S. Pinheiro, V. G. Pinto, and E. M. F. Brandt, “Performance of blended concrete with supplementary cementitious materials under sulfuric acid-a systematic review,” Rev. Mater., vol. 27, no. 2, 2022, doi: 10.1590/s1517-707620220002.1311.

Downloads

Publicado

2024-10-07

Como Citar

RAMOS, Lucas Thadeu da Silva; MOURÃO, André Barroso; MORAIS, Ivan Batista; FERREIRA, Hélvius de Castro Bicalho; BEZERRA, Augusto Cesar da Silva; POGGIALI, Flávia Spitale Jacques. Durabilidade de concretos produzidos com substituição de areia por rejeito de minério de ferro . In: ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO, 20., 2024. Anais [...]. Porto Alegre: ANTAC, 2024. p. 1–15. DOI: 10.46421/entac.v20i1.5921. Disponível em: https://eventos.antac.org.br/index.php/entac/article/view/5921. Acesso em: 24 nov. 2024.

Artigos mais lidos pelo mesmo(s) autor(es)

Artigos Semelhantes

<< < 13 14 15 16 17 18 19 20 21 22 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.