Avaliação do impacto da escolha dos revestimentos de fachada na emissão incorporada de GEE de edifícios do setor noroeste - Brasília/DF

Authors

Keywords:

mudanças climáticas, emissão incorporada de GEE, avaliação do ciclo de vida, fachadas, revestimento

Abstract

The activity of building construction is part responsible for GHG emissions into the atmosphere, so this same activity needs to be aligned with global goals that seek to curb the increase in the earth's temperature. The construction materials specified in the projects cause impacts on the environment from their production to their disposal. Therefore, the use of materials with greater environmental impact increases GHG emissions from the production chain of the construction industry. This study aimed to evaluate the impact of embodied GHG emissions related to the façade covering materials by the methodology of life cycle assessment (LCA) in buildings of the Northwest Sector-DF. In the methodology of the study three typologies were defined, representing the buildings of the implementation stage 01 of the sector, being them 01) square plan, with a projection area of 1,024m2; 02) rectangular plan, with a projection area of 1,000m2; and 03) rectangular plan, with a projection area of 1,500m2. Evaluating only the materials of the facades, it was found that typology 01 reached the value of 109, 34 kgCO2eq./m2 of facade, typology 02 totaled 80.75 kgCO2eq./m2 of facade and typology 03, obtained 76.11 kgCO2eq./m2 of facade. When evaluating only the materials applied in the coatings of the facades it was observed that granite, plaster, ACM, paint and glass were the materials with the greatest impact on the typologies, and in typology 01 the coating material with the greatest impact was granite, totaling 71% contributing to the fact that this typology had the highest impact compared to the others.

Author Biographies

Roberta Carolina Assunção Faria, Universidade de Brasília

Mestre em arquitetura e urbanismo na Universidade de Brasília (Brasília - DF) e Consulta na divisão de Habitação e Desenvolvimento Urbano (HUD) do Banco Interamericano de Desenvolvimento. 

Caio Frederico Silva, Universidade de Brasília

Pós-Doutorado na Universidade de Harvard (Visiting Scholar 2019-2020), ligado ao Harvard Herbarium na Faculty of Arts and Sciences e à Escola de Design (Graduate School of Design - GSD) e Professor e Diretor da Faculdade de Arquitetura e Urbanismo da Universidade de Brasília (Brasília - DF).

Ariane Louzada Sasso-Ferrão, Quali-A Conforto Ambiental e Eficiência Energética

 Mestre em Arquitetura e Urbanismo pelo Programa de Pós-graduação em Arquitetura e Urbanismo da Universidade Federal do Espírito Sando (Vitória - ES) e Gerente Técnica na Quali-A Conforto Ambiental e Eficiência Energética (Brasília-DF).

References

ABEYDEERA, L. H. U. W.; MESTHRIGE, J. W.; SAMARASINGHALAGE, T. I. Perception of embodied carbon mitigation strategies: The case of Sri Lankan construction industry. Sustainability (Switzerland), v. 11, n. 11, 1 jun. 2019. Disponível em: https://www.mdpi.com/2071-1050/11/11/3030. Acesso em 20 de jun. de 2023.

ABNT. Associação Brasileira de Normas Técnicas ISO 14040: Gestão ambiental - Avaliação do ciclo de vida - Princípios e estrutura. p. 21, 2014. Disponível em: https://edisciplinas.usp.br/pluginfile.php/5759669/mod_folder/content/0/NBR%20ISO%2014040%20-%20GA-ACV%20-%20Princ%C3%ADpios%20de%20estrutura.pdf?forcedownload=1. Acesso em 20 de jun. de 2023.

BALOUKTSI, M.; LÜTZKENDORF, T.; KREINER, H. Guidance to including Embodied Energy & Embodied GHG Emissions in the decision-making process for SME’s - Guidline for Construction Product Manufacturers (IEA EBC Annex 57), 2016. Disponível em: https://www.iea-ebc.org/Data/publications/EBC_Annex_57_Guideline_for_Manufacturers.pdf . Acesso em 20 de jun. de 2023.

BIRGISDÓTTIR, H. et al. Evaluation of Embodied Energy and CO 2eq for Building Construction (Annex 57) - Subtask 4: Case studies and recommendations for the reduction of embodied energy and embodied greenhouse gas emissions from buildings. [s.l: s.n.], 2016. Disponível em: http://www.iea-ebc.org/Data/publications/EBC_Annex_57_ST4_Case_Studies_Recommendations.pdf. Acesso em 20 de jun. de 2023.

CALDAS, L.; CARVALHO, M.; TOLEDO FILHO, R. Inserção da ACV no processo de projeto de edificações: avaliação de alternativas e ferramentas computacionais para a prática de mercado. Paranoá: cadernos de arquitetura e urbanismo, n. 28, p. 0–1, 2020. Disponível em: https://periodicos.unb.br/index.php/paranoa/article/view/32435. Acesso em 20 de jun. de 2023

DE WOLF, C.; POMPONI, F.; MONCASTER, A. Measuring embodied carbon dioxide equivalent of buildings: A review and critique of current industry practice. Energy and Buildings, v. 140, p. 68–80, 2017. Disponível em: https://www.sciencedirect.com/science/article/pii/S0378778817302815. Acesso em 20 de jun. de 2023.

DIXIT, M. K. et al. Need for an embodied energy measurement protocol for buildings: A review paper. Renewable and Sustainable Energy Reviews, ago. 2012. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1364032112002043. Acesso em 20 de jun. de 2023.

HÄKKINEN, T. et al. Reducing embodied carbon during the design process of buildings. Journal of Building Engineering, v. 4, p. 1–13, 2015. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S2352710215300036. Acesso em 20 de jun. de 2023.

HERNANDEZ, P.; KENNY, P. From net energy to zero energy buildings: Defining life cycle zero energy buildings (LC-ZEB). Energy and Buildings, v. 42, n. 6, p. 815–821, jun. 2010. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0378778809003247. Acesso em 20 de jun. de 2023.

IBN-MOHAMMED, T. et al. Operational vs. embodied emissions in buildings - A review of current trends. Energy and Buildings, v. 66, p. 232–245, 2013. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0378778813004143. Acesso em 20 de jun. de 2023.

IPCC. Climate Change 2022 – Mitigation of Climate Change. Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 2022. Disponível em: https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf. Acesso em 20 de jun. de 2023.

JI, C. et al. Embodied and Operational CO2 Emissions of the Elementary School Buildings in Different Climate Zones. KSCE Journal of Civil Engineering, v. 24, n. 4, p. 1037–1048, 2020. Disponível em: https://www.researchgate.net/publication/339771756_Embodied_and_Operational_CO2_Emissions_of_the_Elementary_School_Buildings_in_Different_Climate_Zones. Acesso em 20 de jun. de 2023

JOHN, V. M. et al. Proposta de método prático para avaliar o desempenho ambiental no ciclo de vida da construção. CONCRETO & Construções, v. ,XLVIII, n. 100, p. 48–56, 2020. Disponível em: https://www.researchgate.net/publication/346954386_Proposta_de_metodo_pratico_para_avaliar_o_desempenho_ambiental_no_ciclo_de_vida_da_construcao. Acesso em 20 de jun. de 2023.

KHASREEN, M. M.; BANFILL, P. F. G.; MENZIES, G. F. Life-cycle assessment and the environmental impact of buildings: A review. Sustainability, v. 1, n. 3, p. 674–701, 2009. Disponível em: https://www.mdpi.com/2071-1050/1/3/674. Acesso em 20 de jun. de 2023.

LANGSTON, Y. L.; LANGSTON, C. A. Reliability of building embodied energy modelling: An analysis of 30 Melbourne case studies. Construction Management and Economics, v. 26, n. 2, p. 147–160, 2008. Disponível em: https://www.researchgate.net/publication/24078088_Reliability_of_building_embodied_energy_modelling_An_analysis_of_30_Melbourne_case_studies . Acesso em 20 de jun. de 2023.

LÜTZKENDORF, T.; BALOUKTSI, M. Evaluation of Embodied Energy and CO 2eq for Building Construction (Annex 57) - Subtask 1: basics, actors and concepts. [s.l: s.n.], 2016. Disponível em: https://www.iea-ebc.org/Data/publications/EBC_Annex_57_ST1_Basics_Actors_Concepts.pdf. Acesso em 20 de jun. de 2023.

PASSUELLO, A. C. B. et al. Aplicação da Avaliação do Ciclo de Vida na análise de impactos ambientais de materiais de construção inovadores: estudo de caso da pegada de carbono de clínqueres alternativos. Ambiente Construido, v. 14, n. 4, p. 7–20, 2014. Disponível em: https://www.scielo.br/j/ac/a/gwr9Q3mQ4KJZxHyPW8n5Vhd/abstract/?lang=pt. Acesso em 20 de jun. de 2023.

PIEKARSKI, C. M. et al. Métodos De Avaliação de Impactos Do Ciclo De Vida: Uma Discussão Para Adoção de Métodos nas Especificidades Brasileiras. Revista Gestão Industrial, v. 8, n. 3, 6 nov. 2012. Disponível em: https://periodicos.utfpr.edu.br/revistagi/article/view/1325. Acesso em 20 de jan. de 2023.

POMPONI, F.; MONCASTER, A. Embodied carbon mitigation and reduction in the built environment – What does the evidence say? Journal of Environmental Management, v. 181, p. 687–700, 2016. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0301479716305746. Acesso em 20 de jan. de 2023.

RÖCK, M. et al. Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation. Applied Energy, v. 258, 15 jan. 2020. Disponível em: https://www.sciencedirect.com/science/article/pii/S0306261919317945. Acesso em 20 de jan. de 2023.

RUUSKA, A. P.; HÄKKINEN, T. M. The significance of various factors for GHG emissions of buildings. International Journal of Sustainable Engineering, v. 8, n. 4–5, p. 317–330, 2015. Disponível em: https://www.tandfonline.com/doi/full/10.1080/19397038.2014.934931. Acesso em 20 de jan. de 2023.

SETAC. A Technical Framework for Life-cycle Assessments. Workshop Report. Vermont, USA,1990. Disponível em: https://www.setac.org/store/ViewProduct.aspx?id=1037493. Acesso em 23 de mai de 2023.

UNEP. Towards a zero-emissions, efficient and resilient buildings and construction sector2020 Global Status Report for Buildings and Construction. Nairobi, 2020. Disponível em: https://wedocs.unep.org/handle/20.500.11822/34572;jsessionid=FFB44AFEA6BFFE0F491BE839E2C209F9. Acesso em 20 de jan. de 2023.

Published

2023-12-11

How to Cite

Assunção Faria, R. C., Silva, C. F. ., & Louzada Sasso-Ferrão, A. (2023). Avaliação do impacto da escolha dos revestimentos de fachada na emissão incorporada de GEE de edifícios do setor noroeste - Brasília/DF. ENCONTRO LATINO AMERICANO E EUROPEU SOBRE EDIFICAÇÕES E COMUNIDADES SUSTENTÁVEIS, 5. Retrieved from https://eventos.antac.org.br/index.php/euroelecs/article/view/3038

Issue

Section

Materiais, técnicas e sistemas construtivos sustentáveis.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.