Investigação das aplicações integradas de inteligência artificial e BIM na industria da construção civil

Autores

DOI:

https://doi.org/10.46421/sbtic.v4i00.2409

Palavras-chave:

Inteligência Artificial, BIM, Benefícios, Tecnologia, Construção Civil

Resumo

As tecnologias digitais avançam incorporando modelagens baseadas em Inteligência Artificial (IA), ao passo que a Construção Civil aplica o Modelagem da Informação da Construção (BIM). Nesse contexto, este artigo tem como objetivo identificar quais são os principais benefícios e desafios da integração entre BIM e IA discutindo também as direções para pesquisas futuras. Para isso, aplica-se uma revisão sistemática da literatura que compreende a aplicação de bibliometria e análise de conteúdo em 166 artigos indexados na Scopus e Web of Science. Os resultados desta pesquisa mostram que a literatura explora e atesta a viabilidade da automação dos processos de projeto com a combinação de BIM e IA através de dados. Todavia, apontam a necessidade do desenvolvimento de linhas de pesquisas dedicadas a formalização do conhecimento do domínio de automação para potencial utilização dos dados BIM para aplicação de forma contextualizada em diferentes projetos da construção. As contribuições deste trabalho destacam a importância da exploração de novas tecnologias para o ambiente construído, ao passo que explana os desafios de incorporação na indústria. Esta pesquisa ainda contribui para a literatura através da identificação de potenciais tópicos a serem desenvolvidos que podem ser novas tendências de pesquisa.

Downloads

Biografia do Autor

Josivan Leite Alves, Universidade Federal do Pernambuco

Mestrado em Engenharia de Produção pela Universidade de São Paulo. Doutorando pela Universidade Federal de Pernambuco (Recife - PE, Brasil)

Rachel Perez Palha, Universidade Federal do Pernambuco

Doutorado em Engenharia de Produção. Professora Adjunto do curso de Engenharia de Civil da Univeridade Federal de Pernambuco (Recife - PE, Brasil)

Adiel Teixeira de Almeida Filho, Universidade Federal de Pernambuco

Doutorado em Engenharia de Produção. Professor Associado da Universidade Federal de Pernambuco (Recife - PE, Brasil).

Referências

ARIA, Massimo; CUCCURULLO, Corrado. bibliometrix : An R-tool for comprehensive science mapping analysis. Journal of Informetrics, [S. l.], v. 11, n. 4, p. 959–975, 2017. DOI: 10.1016/j.joi.2017.08.007. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S1751157717300500.

BOJE, Calin; GUERRIERO, Annie; KUBICKI, Sylvain; REZGUI, Yacine. Towards a semantic Construction Digital Twin: Directions for future research. Automation in Construction, [S. l.], v. 114, p. 103179, 2020. DOI: 10.1016/j.autcon.2020.103179. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0926580519314785.

ÇETIN, Sultan; DE WOLF, Catherine; BOCKEN, Nancy. Circular Digital Built Environment: An Emerging Framework. Sustainability, [S. l.], v. 13, n. 11, p. 6348, 2021. DOI: 10.3390/su13116348. Disponível em: https://www.mdpi.com/2071-1050/13/11/6348.

COLLINS, Fiona C.; RINGSQUANDL, Martin; BRAUN, Alexander; HALL, Daniel M.; BORRMANN, Andre. Shape encoding for semantic healing of design models and knowledge transfer to scan-to-BIM. Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction, [S. l.], v. 175, n. 4, p. 160–180, 2022. DOI: 10.1680/jsmic.21.00032. Disponível em: https://www.icevirtuallibrary.com/doi/10.1680/jsmic.21.00032.

DARKO, Amos; CHAN, Albert P. C.; ADABRE, Michael A.; EDWARDS, David J.; HOSSEINI, M. Reza; AMEYAW, Ernest E. Artificial intelligence in the AEC industry: Scientometric analysis and visualization of research activities. Automation in Construction, [S. l.], v. 112, p. 103081, 2020. DOI: 10.1016/j.autcon.2020.103081. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S092658051930651X.

DOBRUCALI, Esra; DEMIRKESEN, Sevilay; SADIKOGLU, Emel; ZHANG, Chengyi; DAMCI, Atilla. Investigating the impact of emerging technologies on construction safety performance. Engineering, Construction and Architectural Management, [S. l.], 2022. DOI: 10.1108/ECAM-07-2022-0668. Disponível em: https://www.emerald.com/insight/content/doi/10.1108/ECAM-07-2022-0668/full/html.

DOUKARI, Omar; SECK, Boubacar; GREENWOOD, David. The Creation of Construction Schedules in 4D BIM: A Comparison of Conventional and Automated Approaches. Buildings, [S. l.], v. 12, n. 8, p. 1145, 2022. DOI: 10.3390/buildings12081145. Disponível em: https://www.mdpi.com/2075-5309/12/8/1145.

HETEMI, Ermal; ORDIERES-MERÉ, Joaquin; NUUR, Cali. An Institutional Approach to Digitalization in Sustainability-Oriented Infrastructure Projects: The Limits of the Building Information Model. Sustainability, [S. l.], v. 12, n. 9, p. 3893, 2020. DOI: 10.3390/su12093893. Disponível em: https://www.mdpi.com/2071-1050/12/9/3893.

IGWE, Uchenna Sampson; MOHAMED, Sarajul Fikri; AZWARIE, Mohd Bin Mat Dzahir; UGULU, Rex Asibuodu; AJAYI, Olusegun. Acceptance of contemporary technologies for cost management of construction projects. Journal of Information Technology in Construction, [S. l.], v. 27, p. 864–883, 2022. DOI: 10.36680/j.itcon.2022.042. Disponível em: https://www.itcon.org/paper/2022/42.

KIM, Kyungki; CHO, Yong; KIM, Kinam. BIM-Driven Automated Decision Support System for Safety Planning of Temporary Structures. Journal of Construction Engineering and Management, [S. l.], v. 144, n. 8, 2018. DOI: 10.1061/(ASCE)CO.1943-7862.0001519. Disponível em: https://ascelibrary.org/doi/10.1061/%28ASCE%29CO.1943-7862.0001519.

LEE, Seojoon; JEONG, Minkyeong; CHO, Chung-Suk; PARK, Jaewon; KWON, Soonwook. Deep Learning-Based PC Member Crack Detection and Quality Inspection Support Technology for the Precise Construction of OSC Projects. Applied Sciences, [S. l.], v. 12, n. 19, p. 9810, 2022. DOI: 10.3390/app12199810. Disponível em: https://www.mdpi.com/2076-3417/12/19/9810.

LEON-GARZA, Hugo; HAGRAS, Hani; PEÑA-RIOS, Anasol; CONWAY, Anthony; OWUSU, Gilbert. A type-2 fuzzy system-based approach for image data fusion to create building information models. Information Fusion, [S. l.], v. 88, p. 115–125, 2022. DOI: 10.1016/j.inffus.2022.07.007. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S1566253522000665.

LOPES, Ana Paula Vilas Boas Viveiros; DE CARVALHO, Marly Monteiro. Evolution of the open innovation paradigm: Towards a contingent conceptual model. Technological Forecasting and Social Change, [S. l.], v. 132, p. 284–298, 2018. DOI: 10.1016/j.techfore.2018.02.014. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0040162518302786.

MARZOUK, Mohamed; ZAHER, Mohamed. Artificial intelligence exploitation in facility management using deep learning. Construction Innovation, [S. l.], v. 20, n. 4, p. 609–624, 2020. DOI: 10.1108/CI-12-2019-0138. Disponível em: https://www.emerald.com/insight/content/doi/10.1108/CI-12-2019-0138/full/html.

MIKALEF, Patrick; GUPTA, Manjul. Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management, [S. l.], v. 58, n. 3, p. 103434, 2021. DOI: 10.1016/j.im.2021.103434. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0378720621000082.

MOHANTA, Ashaprava; DAS, Sutapa. Decision support system for the early stage of green building envelope design considering energy and maintainability. Architectural Engineering and Design Management, [S. l.], v. 19, n. 2, p. 163–182, 2023. DOI: 10.1080/17452007.2022.2094869. Disponível em: https://www.tandfonline.com/doi/full/10.1080/17452007.2022.2094869.

MUSELLA, Christian; SERRA, Milena; MENNA, Costantino; ASPRONE, Domenico. Building information modeling and artificial intelligenc: Advanced technologies for the digitalisation of seismic damage in existing buildings. Structural Concrete, [S. l.], v. 22, n. 5, p. 2761–2774, 2021. DOI: 10.1002/suco.202000029. Disponível em: https://onlinelibrary.wiley.com/doi/10.1002/suco.202000029.

PAN, Yue; ZHANG, Limao. Roles of artificial intelligence in construction engineering and management: A critical review and future trends. Automation in Construction, [S. l.], v. 122, p. 103517, 2021. DOI: 10.1016/j.autcon.2020.103517. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0926580520310979.

PEDRAL SAMPAIO, Rodrigo; AGUIAR COSTA, António; FLORES-COLEN, Inês. A Systematic Review of Artificial Intelligence Applied to Facility Management in the Building Information Modeling Context and Future Research Directions. Buildings, [S. l.], v. 12, n. 11, p. 1939, 2022. DOI: 10.3390/buildings12111939. Disponível em: https://www.mdpi.com/2075-5309/12/11/1939.

PETROVA, Ekaterina; PAUWELS, Pieter; SVIDT, Kjeld; JENSEN, Rasmus Lund. Towards data-driven sustainable design: decision support based on knowledge discovery in disparate building data. Architectural Engineering and Design Management, [S. l.], v. 15, n. 5, p. 334–356, 2019. DOI: 10.1080/17452007.2018.1530092. Disponível em: https://www.tandfonline.com/doi/full/10.1080/17452007.2018.1530092.

RODRIGUEZ-TREJO, Sergio; AHMAD, Ahmad Mohammad; HAFEEZ, Mian Atif; DAWOOD, Huda; VUKOVIC, Vladimir; KASSEM, Mohamad; NAJI, Khalid K.; DAWOOD, Nashwan. Hierarchy based information requirements for sustainable operations of buildings in Qatar. Sustainable Cities and Society, [S. l.], v. 32, p. 435–448, 2017. DOI: 10.1016/j.scs.2017.03.005. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S2210670716307119.

RŮŽIČKA, Jan; VESELKA, Jakub; RUDOVSKÝ, Zdeněk; VITÁSEK, Stanislav; HÁJEK, Petr. BIM and Automation in Complex Building Assessment. Sustainability, [S. l.], v. 14, n. 4, p. 2237, 2022. DOI: 10.3390/su14042237. Disponível em: https://www.mdpi.com/2071-1050/14/4/2237.

SACKS, Rafael; BRILAKIS, Ioannis; PIKAS, Ergo; XIE, Haiyan Sally; GIROLAMI, Mark. Construction with digital twin information systems. Data-Centric Engineering, [S. l.], v. 1, p. e14, 2020. DOI: 10.1017/dce.2020.16. Disponível em: https://www.cambridge.org/core/product/identifier/S2632673620000167/type/journal_article.

SANTOS, Paula de Oliveira; CARVALHO, Marly Monteiro De. Exploring the challenges and benefits for scaling agile project management to large projects: a review. Requirements Engineering, [S. l.], v. 27, n. 1, p. 117–134, 2021. DOI: 10.1007/s00766-021-00363-3. Disponível em: https://link.springer.com/10.1007/s00766-021-00363-3.

SHA, Huajing; XU, Peng; YANG, Zhiwei; CHEN, Yongbao; TANG, Jixu. Overview of computational intelligence for building energy system design. Renewable and Sustainable Energy Reviews, [S. l.], v. 108, p. 76–90, 2019. DOI: 10.1016/j.rser.2019.03.018. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S1364032119301510.

SHAHZAD, Muhammad; SHAFIQ, Muhammad Tariq; DOUGLAS, Dean; KASSEM, Mohamad. Digital Twins in Built Environments: An Investigation of the Characteristics, Applications, and Challenges. Buildings, [S. l.], v. 12, n. 2, p. 120, 2022. DOI: 10.3390/buildings12020120. Disponível em: https://www.mdpi.com/2075-5309/12/2/120.

SILVA, Tássia Farssura Lima; CARVALHO, Marly Monteiro; VIEIRA, Darli Rodrigues. BIM Critical-Success Factors in the Design Phase and Risk Management: Exploring Knowledge and Maturity Mediating Effect. Journal of Construction Engineering and Management, [S. l.], v. 148, n. 10, 2022. DOI: 10.1061/(ASCE)CO.1943-7862.0002343. Disponível em: https://ascelibrary.org/doi/10.1061/%28ASCE%29CO.1943-7862.0002343.

SOMAN, Ranjith K.; WHYTE, Jennifer K. Codification Challenges for Data Science in Construction. Journal of Construction Engineering and Management, [S. l.], v. 146, n. 7, 2020. DOI: 10.1061/(ASCE)CO.1943-7862.0001846. Disponível em: https://ascelibrary.org/doi/10.1061/%28ASCE%29CO.1943-7862.0001846.

TRANFIELD, David; DENYER, David; SMART, Palminder. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. British Journal of Management, [S. l.], v. 14, n. 3, p. 207–222, 2003. DOI: 10.1111/1467-8551.00375. Disponível em: https://onlinelibrary.wiley.com/doi/10.1111/1467-8551.00375.

TURJO, Manoshi Das; KHAN, Mohammad Monirujjaman; KAUR, Manjit; ZAGUIA, Atef. Smart Supply Chain Management Using the Blockchain and Smart Contract. Scientific Programming, [S. l.], v. 2021, p. 1–12, 2021. DOI: 10.1155/2021/6092792. Disponível em: https://www.hindawi.com/journals/sp/2021/6092792/.

TURNER, Christopher J.; OYEKAN, John; STERGIOULAS, Lampros; GRIFFIN, David. Utilizing Industry 4.0 on the Construction Site: Challenges and Opportunities. IEEE Transactions on Industrial Informatics, [S. l.], v. 17, n. 2, p. 746–756, 2021. DOI: 10.1109/TII.2020.3002197. Disponível em: https://ieeexplore.ieee.org/document/9117064/.

WANG, Hongbo; HU, Yan. Artificial Intelligence Technology Based on Deep Learning in Building Construction Management System Modeling. Advances in Multimedia, [S. l.], v. 2022, p. 1–9, 2022. DOI: 10.1155/2022/5602842. Disponível em: https://www.hindawi.com/journals/am/2022/5602842/.

WANG, Hongxin; XU, Peng; SHA, Huajing; GU, Jiefan; XIAO, Tong; YANG, Yikun; ZHANG, Dingyi. BIM-based automated design for HVAC system of office buildings—An experimental study. Building Simulation, [S. l.], v. 15, n. 7, p. 1177–1192, 2022. DOI: 10.1007/s12273-021-0883-7. Disponível em: https://link.springer.com/10.1007/s12273-021-0883-7.

YANG, Yang; CHAN, Albert P. C.; SHAN, Ming; GAO, Ran; BAO, Fengyu; LYU, Sainan; ZHANG, Qingwen; GUAN, Junfeng. Opportunities and Challenges for Construction Health and Safety Technologies under the COVID-19 Pandemic in Chinese Construction Projects. International Journal of Environmental Research and Public Health, [S. l.], v. 18, n. 24, p. 13038, 2021. DOI: 10.3390/ijerph182413038. Disponível em: https://www.mdpi.com/1660-4601/18/24/13038.

ZHANG, Fan; CHAN, Albert P. C.; DARKO, Amos; CHEN, Zhengyi; LI, Dezhi. Integrated applications of building information modeling and artificial intelligence techniques in the AEC/FM industry. Automation in Construction, [S. l.], v. 139, p. 104289, 2022. DOI: 10.1016/j.autcon.2022.104289. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0926580522001625.

Downloads

Publicado

2023-10-29

Como Citar

ALVES, Josivan Leite; PALHA, Rachel Perez; ALMEIDA FILHO, Adiel Teixeira de. Investigação das aplicações integradas de inteligência artificial e BIM na industria da construção civil. In: SIMPÓSIO BRASILEIRO DE TECNOLOGIA DA INFORMAÇÃO E COMUNICAÇÃO NA CONSTRUÇÃO, 4., 2023. Anais [...]. Porto Alegre: ANTAC, 2023. p. 1–12. DOI: 10.46421/sbtic.v4i00.2409. Disponível em: https://eventos.antac.org.br/index.php/sbtic/article/view/2409. Acesso em: 9 jan. 2025.

Edição

Seção

Indústria 4.0 e 5.0 no projeto e operação de empreemdimentos

Artigos Semelhantes

<< < 9 10 11 12 13 14 15 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.