Avaliação comparativa da temperatura de superfície e indicadores geoespaciais na cidade de São Paulo

Autores

DOI:

https://doi.org/10.46421/encac.v17i1.4186

Palavras-chave:

Clima Urbano, Ilha de Calor Superficial, Sensoriamento Remoto, Landsat

Resumo

A formação das cidades está atrelada a um processo de diminuição da área vegetada e aumento de materiais mais condutivos ao calor, ocasionando a formação de Ilhas de Calor Urbanas (UHI). A investigação do fenômeno pode ser realizada por dados coletados in loco, para a ilha de calor atmosférica, ou dados provenientes de sensoriamento remoto para a ilha de calor de superfície (SUHI). Desse modo, é objetivo do trabalho verificar comparativamente a temperatura superficial e indicadores geoespaciais para análise da variação ambiental na cidade de São Paulo a fins de investigar a ocorrência de ilha de calor superficial. Os dados foram coletados do satélite Landsat 8 em um recorte temporal de nove anos, com o intuito de avaliar o uso e ocupação do solo, o Índice de Vegetação por Diferença Normalizada (NVDI), o Índice de Diferença Normalizada de Áreas Construídas (NDBI) e da temperatura de superfície terrestre (LST), obtendo em decorrência o Índice de Variação do Campo Térmico Urbano (UTFVI) e estimando a SUHI. A análise dos resultados demonstrou um aumento da área construída e uma redução do solo exposto no decorrer dos anos, em que as áreas centrais da cidade são altamente adensadas e os distritos ao sul e extremo norte possuem uma maior área vegetada. Por consequência, há uma disparidade da temperatura de superfície e a formação de ilha de calor superficial nos distritos mais centrais.

Biografia do Autor

Iara Nogueira Liguori, Universidade de São Paulo

Mestra, doutoranda do Programa de Pós-Graduação em Arquitetura e Urbanismo Faculdade de Arquitetura e Urbanismo da Universidade de São Paulo (São Paulo - SP, Brasil)

Leonardo Marques Monteiro, Universidade de São Paulo

Professor Livre-Docente em Arquitetura e Urbanismo na Faculdade de Arquitetura e Urbanismo da Universidade de São Paulo (São Paulo - SP, Brasil)

Referências

ALMEIDA, C. R.; TEODORO, A. C.; GONÇALVES, A. Study of the urban heat island (Uhi) using remote sensing data/techniques: A systematic review. [S. l.]: MDPI, 2021.

AMORIM, M. C. DE C. T. Ilhas de Calor Urbanas: Métodos e Técnicas de Análise. Revista Brasileira de Climatologia, v. 18, n. 1976, p. 361–376, 2016.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 15220: Desempenho térmico de edificações. Associação Brasileira de Normas Técnicas, p. 7, 2005.

BAHADUR. NDVI, NDBI & NDWI Calculation Using Landsat 7,8. Geomatics for Sustainable Development, 2018.

BAHI, H.; MASTOURI, H.; RADOINE, H. Review of methods for retrieving urban heat islands. Materials Today: Proceedings, v. 27, p. 3004–3009, 2020.

BARROS, H. R.; LOMBARDO, M. A. A ilha de calor urbana e o uso e cobertura do solo em São Paulo-SP. Geousp – Espaço e Tempo (Online), v. 20, n. 1, p. 160–177, 2016.

Congedo, Luca, (2021). Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. Journal of Open Source Software, 6(64), 3172, https://doi.org/10.21105/joss.03172.

DORIGON, L. P.; AMORIM, M. C. DE C. T. Spatial modeling of an urban Brazilian heat island in a tropical continental climate. Urban Climate, v. 28, n. April, p. 100461, 2019.

EFFAT, H. A.; HASSAN, O. A. K. Change detection of urban heat islands and some related parameters using multi-temporal Landsat images; a case study for Cairo city, Egypt. Urban Climate, [s. l.], v. 10, n. P1, p. 171–188, 2014.

FAISAL, A. Al et al. Assessing and predicting land use/land cover, land surface temperature and urban thermal field variance index using Landsat imagery for Dhaka Metropolitan area. Environmental Challenges, [s. l.], v. 4, 2021.

FARHAN, M. et al. Impact of urbanization on land surface temperature and surface urban heat Island using optical remote sensing data : A case study of Jeju Island , Republic of Korea. Building and Environment, [s. l.], v. 222, n. April, p. 109368, 2022.

FERREIRA, D. G.; A. A influência da superfície urbana na variação da temperatura de superfície : uma proposta metodológica de análise. [s. l.], 2021.

FERREIRA, L. S. vegetação, temperatura de superfície e morfologia urbana: um retrato da região metropolitana de São Paulo. [s.l.] FAU USP, 2019.

FERREIRA, L. S.; DUARTE, D. H. S. Exploring the relationship between urban form, land surface temperature and vegetation indices in a subtropical megacity. Urban Climate, v. 27, n. July 2018, p. 105–123, 2019.

FIALHO, E. S. Ilha de calor: reflexões acerca de um conceito. Revista ACTA Geográfica, [s. l.], p. 61–76, 2012.

FILHO, P. C. de O. et al. Análise da influência do uso da terra no microclima urbano: Caso Irati-PR. Floresta e Ambiente, [s. l.], v. 22, n. 4, p. 465–471, 2015.

GAMARRA, N. L. R.; CORRÊA, M. de P.; TARGINO, A. C. de L. Utilização de sensoriamento remoto em análises de albedo e temperatura de superfície em Londrina - PR: contribuições para estudos de ilha de calor urbana. Revista Brasileira de Meteorologia, [s. l.], v. 29, n. 4, p. 537–550, 2014.

GARCÍA, D. H.; DÍAZ, J. A. Space–time analysis of the earth’s surface temperature, surface urban heat island and urban hotspot: relationships with variation of the thermal field in Andalusia (Spain). Urban Ecosystems, [s. l.], 2023.

HALDER, B. et al. Investigating the relationship between land alteration and the urban heat island of Seville city using multi-temporal Landsat data. Theoretical and Applied Climatology, [s. l.], v. 150, n. 1–2, p. 613–635, 2022.

HALDER, B.; HAGHBIN, M.; FAROOQUE, A. A. An Assessment of Urban Expansion Impacts on Land Transformation of Rajpur-Sonarpur Municipality. Knowledge-Based Engineering and Sciences, [s. l.], v. 2, n. 3, p. 34–53, 2021.

LOMBARDO, M. A. Ilha de calor nas metrópoles: o exemplo de São Paulo. São Paulo: Huci- tec/Lalekla, 1985.

MONTEIRO, F. F. et al. Assessment of Urban Heat Islands in Brazil based on MODIS remote sensing data. Urban Climate, v. 35, n. September 2020, 2021.

NDOSSI, M. I.; AVDAN, U. Application of open source coding technologies in the production of Land Surface Temperature (LST) maps from Landsat: A PyQGIS plugin. Remote Sensing, [s. l.], v. 8, n. 5, 2016.

OLIVEIRA, A. B. de F.; GIACAGLIA, M. E. Collaborative or adversarial production and BIM: a method for better understanding of contracting types, based on BPMN. [s. l.], n. Figure 1, p. 581–589, 2018.

OLIVEIRA, A. P. et al. Assessing Urban Effects On The Elimate Of Metropolitan Regions Of Brazil - Preliminary Results Of The MCITY BRAZIL Project. Exploratory Environmental Science Research, [s. l.], v. 1, n. 1, p. 38–77, 2020.

OKE, T. R. City Size and the Urban Heat Island. Atmospheric Environment Pergamon Pres, v. 7, p. 769–77, 1973.

OKE, T. R. Boundary Layer Climates. London Methuen & CO, 1978.

OKE, T. R. Street design and urban canopy layer climate. Energy and Buildings, v. 11, n. 1–3, p. 103–113, 1988.

PERES, L. DE F. et al. The urban heat island in Rio de Janeiro, Brazil, in the last 30 years using remote sensing data. International Journal of Applied Earth Observation and Geoinformation, v. 64, n. August 2017, p. 104–116, 2018.

RAHMAN, M. N. et al. Impact of Urbanization on Urban Heat Island Intensity in Major Districts of Bangladesh Using Remote Sensing and Geo-Spatial Tools. Climate, [s. l.], v. 10, n. 1, 2022.

RENARD, F. et al. Evaluation of the effect of urban redevelopment on surface urban heat islands. Remote Sensing, [s. l.], v. 11, n. 3, 2019.

RODRIGUEZ-GALIANO, V. et al. Downscaling Landsat 7 ETM+ thermal imagery using land surface temperature and NDVI images. International Journal of Applied Earth Observation and Geoinformation, [s. l.], v. 18, n. 1, p. 515–527, 2012.

SILVA, K. A. da et al. Analysis of vegetation dynamics using the normalized difference vegetation index (NDVI) at the archipelago of Fernando de Noronha, Pernambuco, Brazil. Interações (Campo Grande), [s. l.], p. 885–901, 2020.

STREUTKER, D. R. Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sensing of Environment, [s. l.], v. 85, n. 3, p. 282–289, 2003.

USGS. Landsat Missions. Disponível em: <https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8?qt-science_support_page_related_con=0#qt-science_support_page_related_con> . Acesso em: 20 ago. 2023.

VOOGT, J. A.; OKE, T. R. Thermal remote sensing of urban climates. Remote Sensing of Environment, [s. l.], v. 86, n. 3, p. 370–384, 2003.

WANG, W. et al. Remote sensing image-based analysis of the urban heat island effect in Shenzhen, China. Physics and Chemistry of the Earth, [s. l.], v. 110, n. September 2018, p. 168–175, 2019.

WULDER, M. A. et al. The global Landsat archive: Status, consolidation, and direction. Remote Sensing of Environment, [s. l.], v. 185, p. 271–283, 2016.

ZHA, Y.; GAO, J.; NI, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, [s. l.], v. 24, n. 3, p. 583–594, 2003.

ZHANG, Y.; ODEH, I. O. A.; HAN, C. Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. International Journal of Applied Earth Observation and Geoinformation, [s. l.], v. 11, n. 4, p. 256–264, 2009.

Downloads

Publicado

26/10/2023

Como Citar

LIGUORI, I. N.; MONTEIRO, L. M. Avaliação comparativa da temperatura de superfície e indicadores geoespaciais na cidade de São Paulo. In: ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO, 17., 2023. Anais [...]. [S. l.], 2023. p. 1–10. DOI: 10.46421/encac.v17i1.4186. Disponível em: https://eventos.antac.org.br/index.php/encac/article/view/4186. Acesso em: 18 maio. 2024.

Edição

Seção

2. Clima e Planejamento Urbano

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >>