How to represent opaque ventilated facades in building energy simulation: a comparative study between three strategies
um estudo comparativo entre três estratégias
DOI:
https://doi.org/10.46421/encac.v17i1.3755Keywords:
Modeling, Computer simulation, Opaque ventilated facadesAbstract
Modeling the opaque ventilated facades in buildings energy simulation software is a challenge, as this technology allows an infinity of constructive configurations, making simulation necessary to verify the efficiency of its thermal performance in each case. This work aims to present a strategy for modeling opaque ventilated facades in building energy simulation software, EnergyPlus. The study was carried out based on the comparison of temperature values obtained from the simulations, through three ways of simulating the natural ventilation of the cavity, with data measured and published in another paper. The method comprises 3 steps: selection and definition of the model to be studied based on a reference article; computer simulations with different EnergyPlus modules and finally, comparison between the models with statistical indicators. Modules are parts that make up the program structure and allow the calculation of the energy required for heating and cooling a building using a variety of systems and energy sources. The chosen modules were: Exterior Natural Vented Cavity, Wind and Stack Open Area and the Airflow Network. The results indicated that the program´s module for naturally ventilated air cavities simplifies some important data, mainly regarding the surface temperatures of the external material. The other modules performed very similarly, with Airflow Network obtaining the highest correspondences between measured and simulated values.
References
ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15220: Desempenho térmico de edificações. Rio de Janeiro, 2008.
ASHRAE. Standard 140 – Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. American Society of Heating, Refrigerating and Air-Conditioning Engineers. Atlanta, 2017.
BALTER, J.; BAREA, G.; GANEM, C. Improvements in the energy performance of buildings in summer, through the integration of ventilated envelopes on north-facing facades and roofs. The case of Mendoza, Argentina. Habitat Sustentable, v. 10, n. 2, p. 94–105, 2020.
BIG LADDER SOFTWARE. Euclid. Disponível em: https://bigladdersoftware.com/projects/euclid/. Acesso em 23 dez 2022.
BRACKNEY, L. et al. Building Energy Modeling with OpenStudio - A Practical Guide for Students and Professionals. Cham: Springer, 2018.
COSTA, V. A. C. Trocas de calor entre edificações térreas e o solo e sua modelagem no pré-processador Slab. Dissertação de Mestrado em Arquitetura, Urbanismo e Tecnologia, Instituto de Arquitetura e Urbanismo, Universidade de São Paulo. São Carlos, 2017.
DOE. United States Department of Energy. Engineering Reference. EnergyPlus™ Version 9.3.0 Documentation. 2020a.
ELEMENTS. Programa para criação e edição de arquivos climáticos para modelagem de energia em edifícios. Disponível em: https://bigladdersoftware.com/projects/elements/. Acesso em 20 dez 2022.
GIANCOLA, E. et al. Experimental assessment and modelling of the performance of an open joint ventilated façade during actual operating conditions in Mediterranean climate. Energy and Buildings, v. 54, p. 363–375, 2012.
GIMENEZ, J. M.; BRE, F. Optimization of RANS turbulence models using genetic algorithms to improve the prediction of wind pressure coefficients on low-rise buildings. Journal of Wind Engineering & Industrial Aerodynamics, v. 193, 2019, DOI: https://doi.org/10.1016/j.jweia.2019.103978.
GOULART, M. F.; LABAKI, L. C. Thermal performance of opaque ventilated facades: a systematic review. PARC Pesq. em Arquit. e Constr., Campinas, SP, v. 13, 2022. DOI: https://doi.org/10.20396/parc.v13i00.8667308.
GREGÓRIO-ATEM, C.; APARICIO-FERNÁNDEZ, C.; COCH, H.; VIVANCOS, J. L. Opaque Ventilated Façade (OVF) Thermal Performance Simulation for Office Buildings in Brazil. Sustainability, v. 12, n. 18, p. 7635, 16 set. 2020. DOI: http://dx.doi.org/10.3390/su12187635.
IBAÑEZ-PUY, M. et al. Opaque Ventilated Façades: Thermal and energy performance review. Renewable and Sustainable Energy Reviews, v. 79, p. 180–191, nov. 2017.
KREBS, C. L. M. Possibilidades para o emprego do sistema de fachada ventilada opaca em edifícios comerciais nas oito zonas bioclimáticas do Brasil. Dissertação de Mestrado em Arquitetura e Urbanismo, Faculdade de Arquitetura e Urbanismo, Universidade Federal de Pelotas, Pelotas, 2016.
MACIEL, A. C. F.; CARVALHO, M. T. Operational energy of opaque ventilated façades in Brazil. Journal Of Building Engineering, [S.L.], v. 25, p. 100775, set. 2019. Elsevier BV. DOI: http://dx.doi.org/10.1016/j.jobe.2019.100775.
MORAES FILHO, F. W. de. Desempenho térmico de fachadas ventiladas frente ao clima equatorial úmido da Amazônia. Dissertação de Mestrado em Arquitetura e Urbanismo, Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2019.
PENSO, E. A. Análise do Desempenho Térmico de Fachadas Ventiladas em Edifícios de Escritório. Dissertação de Mestrado em Arquitetura e Urbanismo, Centro Tecnológico, Universidade Federal de Santa Catarina, Florianópolis, 2017.
ROCHA, A. P. Fachada ventilada: industrial e sem desperdícios de resíduos, sistema de fachada com cerâmica extrudada começa a se disseminar em edifícios comerciais. Revista Téchne, n.176, p. 48-52, 2011.
SANJUAN, C.; SUÁREZ, M. J.; GONZÁLEZ, M.; PISTONO, J.; BLANCO, E. Energy performance of an open-joint ventilated façade compared with a conventional sealed cavity façade. Solar Energy, v. 85, n. 9, p. 1851-1863, Sept. 2011. DOI: http://dx.doi.org/10.1016/j.solener.2011.04.028.
SOUSA, F. P. de.; SILVA, A. S. Manual de introdução à simulação do desempenho de edifícios: um curso para iniciantes no software EnergyPlus [livro eletrônico]. 1. ed. Universidade Federal do Mato Grosso do Sul. Campo Grande, 2021. Disponível em: https://ppgees.ufms.br/publicacoes/repositorio-ppgees/producao-tecnica-tecnologica/. Acesso em 21 dez 2022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO
This work is licensed under a Creative Commons Attribution 4.0 International License.