Analysis of daylight availability in a classroom by tubular daylight devices using climate-based simulation
DOI:
https://doi.org/10.46421/encac.v17i1.3873Keywords:
daylighting, tubular daylighting device, climate-based daylight simulation, classroomAbstract
Studies have sought to characterize great daylight, pointing out that the combination of quality and distribution of this light influences the perception of comfort. Therefore, this paper aims to investigate the daylight availability metrics in a classroom located at the School of Architecture at the Federal University of Minas Gerais. Currently, the distribution of daylight is limited in the classroom due to the obstruction of the surrounding. The methodology used the Climate Based Daylight Modelling (CBDM), with the aid of the ClimateStudio plug-in and the Rhinoceros 3D software, carried out in two stages: 1. To ascertain the current daylighting condition of the space; and 2. proposal for the installation of tubular daylighting. The parameters adopted for the avaluation were the Average Illuminance (Eavg), the Spatial Daylight Autonomy (sDA), and the Useful Daylight Illuminance (UDI). Consequently, the first simulation proved to be consistent with the real situation experienced by the occupants. In the second simulation, the insertion of two tubular daylighting allowed the achievement of daylight autonomy. However, due to limitations for the installation of tubular daylighting, adapting the classroom to new uses proved to be an alternative solution.
References
AECWEB, Iluminação natural por tubos pode gerar economia de até 100%. 2013. Disponível em: https://www.aecweb.com.br/revista/materias/iluminacao-natural-por-tubos-pode-gerar-economia-de-ate-100/6485
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15215-3: Iluminação Natural Parte 3: Procedimentos para avaliação da iluminação natural em ambientes internos. Rio de Janeiro. 2005.
_____. NBR 15220-3: Desempenho térmico Parte 3: Zoneamento Bioclimático Brasileiro. Rio de Janeiro, 2005.
BERNARDES, M. VERGARA, L. G. L. MARTINS, M. S. A arquitetura da sala de aula sob a ótica dos usuários. Revista Projetar, vol.5, pp. 49-61, 2020. Disponível em: https://periodicos.ufrn.br/revprojetar/article/view/19126/12426. Acesso em: 08 jul. 2022.
COSTANZO, V., EVOLA G., MARLETTA, L., NASCONE F. P.. Application of Climate Based Daylight Modelling to the Refurbishment of a School Building in Sicily. Sustainability Journal, MDPI, vol.10, pp.1-19, 2018. Disponível em: https://www.academia.edu/37144107/Application_of_Climate_Based_Daylight_Modelling_to_the_Refurbishment_of_a_School_Building_in_Sicily. Acesso em: 24 abr. de 2022.
EDUCATION FUNDING AGENCY. EFA daylight design guide. Departmental advice. Version 2, pp.1-14, London, 2014. Disponível em: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/388373/EFA_Daylight_design_guide.pdf. Acesso em: 16 jun. 2022
FERNANDES, L. L., REGNIER, C. M., Lighting and visual comfort performance of commercially available tubular daylight devices, Solar Energy, 2023. Doi: https://doi.org/10.1016/j.solener.2023.01.022
IESNA - Illuminating Engineering Society of North America. LM-83-12: Approved Method: IES Spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure (ASE). New York, 2012. INMETRO.
LAMBERTS, R. DUTRA, L. PEREIRA, F. O.R. Eficiência Energética na Arquitetura. 3 ed. pp.151-159. Rio de Janeiro, 2014.
LEDER, S. M. QUIRINO, L. M. M. PEREIRA, Y. V. C. Dutos verticais de captação de luz natural e ventilação cruzada em salas de aula. XVI Encontro Nacional de Tecnologia do Ambiente Construído, pp.1095-1106. São Paulo, 2016.
LESLIE, R et al. Goals and Metrics for Designing Daylighting for Schools. Em: Patterns to daylight schools for people and sustainability. Rensselaer, pp.16-48, 2010. Disponível em: https://www.lrc.rpi.edu/programs/daylighting/pdf/DaylightingPatternBook_Final.pdf. Acesso em: 16 jun. 2022.
NABIL, A., MARDALJEVIC, J. Useful daylight illuminances: A replacement for daylight factors. Elsevier B.V., UK, 2006. Disponível em: https://edisciplinas.usp.br/pluginfile.php/4434083/mod_resource/content/0/Useful%20daylight%20illuminances.%20A%20replacement%20for%20daylight%20factors.pdf. Acesso em: 08 jul. 2022.
MENA-BARRETO, L.; WEY, D., Ontogênese do sistema de temporização – a construção e as reformas dos ritmos biológicos ao longo da vida human, psicologia, USP, 2007, 18(2), 133-153.
SCHMID, A. L. A ideia de conforto: reflexões sobre o ambiente construído. Curitiba: Pacto Ambiental, pp.21-32, 2005.
SOLEMMA. ClimateStudio Video Tutorials. Disponível em: https://www.solemma.com/climatestudio-tutorial-videos. Acesso em: 16 jun. 2022.
SOLEMMA. Daylight Availability. Disponível em: https://climatestudiodocs.com/docs/daylightAvailability.html. Acesso em: 16 jun. 2022.
SOLEMMA. Tubular Daylighting Devices. Disponível em: https://climatestudiodocs.com/docs/TDDs.html. Acesso em: 16 jun. 2022.
SHUXIAO, W; JIANPING, Z.; LIXIONG, W., Research on energy saving analysis of tubular daylight devices, Energy Procedia, 78 (2015) 1781 – 1786.
WYMELENBERG, K.V.D.; MAHIC, A. Annual Daylighting Performance Metrics, Explained: Adopted by the Illuminating Engineering Society, Spatial Daylight Autonomy and Annual Sunlight Exposure allow designers to quantify and compare the success of daylit spaces. Architect Magazine, abril 2016.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO
This work is licensed under a Creative Commons Attribution 4.0 International License.