Design flow of brise's geometry using multiobjective optimization

Authors

DOI:

https://doi.org/10.46421/encac.v17i1.4038

Keywords:

multiobjective optimization, genectic algorithm, design flow

Abstract

Civil construction is one of the fields that most impact the environment through energy consumption, so it is necessary to examine the role of the built environment, and one of the strategies is to improve the energy efficiency of buildings from the concept stage. The aim of this article is to present a building design flow using multiobjective optimization with evolutionary algorithms to assist designers. Thus, the study was applied in a brise of a simplified environment in the city of Campo Grande, MS. Building materials suitable for the bioclimatic zone in which the city is located were considered. The objectives analyzed were the incident solar radiation and daylighting on the indoor environment and the brise area. The chosen softwares were Rhinoceros® and Grasshopper® with Ladybug®, Honeybee® and Wallacei® plugins. It was possible to find ten alternatives according to the Pareto solution, achieving results from the proposed design flow; in this sense, it was possible to visualize the information so that one could choose according to the most relevant criteria, allowing to assist the design process.

Author Biographies

Camila Carli da Silva, Universidade Federal de Mato Grosso do Sul (UFMS)

Mestranda no Programa de Pós-graduação em Eficiência Energética e Sustentabilidade na Universidade Federal de Mato Grosso do Sul, UFMS, Brasil.

Arthur Santos Silva, Universidade Federal de Mato Grosso do Sul (UFMS)

Doutor em Engenharia Civil, Professor do Magistério Superior na Universidade Federal de Mato Grosso do Sul – UFMS, Campo Grande, MS, Brasil.

References

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15220: Desempenho térmico de edificações. Rio de Janeiro. 2005.

ASSOCIAÇÃO BRASILERIA DE NORMAS TÉCNICAS. NBR 15575-3: Edificações habitacionais. Rio de Janeiro. 2021.

COELLO, C. A. C. Evolutionary multi-objective optimization: a historical view of the field. IEEE computational intelligence magazine, v. 1, n. 1, p. 28-36, 2006.

DAVIDSON, S. Grasshopper, algorithmic modeling for rhino, c2023. Home. Disponível em: < https://www.grasshopper3d.com/>. Acessado em: 04 de abr. de 2023.

DU PLESSIS, C. et al. Agenda 21 for sustainable construction in developing countries. CSIR Report BOU E, v. 204, p. 2-5, 2002.

EPE. Anuário estatístico de energia elétrica, 2022. Disponível em <https://www.epe.gov.br/>. Acessado em: 30 jun 2022.

FONSECA, R W. et al. Avaliação do desempenho termoenergético de modelos de referência de escritórios elaborados com base em levantamento de características construtivas nacionais1. Encontro nacional de tecnologia do ambiente construído, v. 16, 2016.

INSTITUTO NACIONAL DE METROLOGIA, QUALIDADE E TECNOLOGIA. Portaria nº 42, de 24 de fevereiro de 2021, que aprova a Instrução Normativa Inmetro para a Classificação de Eficiência Energética de Edificações Comerciais, de Serviços e Públicas (INI-C).

LABEE. Catálogo de propriedades térmicas. Florianópolis. 2010.

LADYBUG TOOLS LLC. Ladybug Tools, c2017-2022. Tools. Disponível em: < https://www.ladybug.tools/>. Acessado em: 04 de abr. de 2023,

LIN, S. H. E. GERBER, D. J. Designing-in performance: A framework for evolutionary energy performance feedback in early stage design. Automation in Construction, v. 38, p. 59-73, 2014.

MAIER, H. R. et al. Introductory overview: Optimization using evolutionary algorithms and other metaheuristics. Environmental modelling & software, v. 114, p. 195-213, 2019.

MCNEEL, R. Rhinoceros desing, model presente, analyze, realize, c1993-2023. Features. Disponível em: < https://www.rhino3d.com/features/>. Acesso em: 04 de abr. de 2023.

MOSSIN, N.; STILLING, Sofie; BOJSTRUP, Thomas Chevalier; LARSEN, Vibeke Grupe; LOTZ, Majo; BLEGVAD, Annette. Na Architecture Guide, to the UM 17 Sustainable Development Goals. 1º edição. Copenhagen, 2018.

OXMAN, R. Performance-based design: current practices and research issues. International journal of architectural computing, v. 6, n. 1, p. 1-17, 2008.

PAN, L., Li, K., Xue, W., Liu, G. Multi-objective optimization for building performance design considering thermal comfort and energy consumption. In: 2016 35th Chinese Control Conference (CCC). IEEE, 2016. p. 2799-2803.

QUEIROZ, N.; PEREIRA, F. OR. Projeto baseado em desempenho: modelo de otimização multicritério para soluções controle solar em fachadas. Encontro Nacional de Tecnologia do Ambiente Construído, v. 18, n. 1, p. 1-8, 2020.

SANTANA, L. O.; GUIMARAES, I. B. B.; CARLO, J. C. Parametrização Aplicada ao Desempenho Energético de Edificações. V! RUS, v. 11, 2015.

SLOWIK, A.; KWASNICKA, H. Evolutionary algorithms and their applications to engineering problems. Neural Computing and Applications, v. 32, p. 12363-12379, 2020.

WALLACEI. Wallacei, c2022. About. Disponível em: < https://www.wallacei.com/>. Acessado em: 04 de abr. de 2023.

Published

2023-10-26

How to Cite

SILVA, Camila Carli da; SILVA, Arthur Santos. Design flow of brise&#039;s geometry using multiobjective optimization. In: ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO, 17., 2023. Anais [...]. [S. l.], 2023. p. 1–10. DOI: 10.46421/encac.v17i1.4038. Disponível em: https://eventos.antac.org.br/index.php/encac/article/view/4038. Acesso em: 3 dec. 2024.

Issue

Section

4. Desempenho Térmico do Ambiente Construído