MODELOS FÍSICOS PARA ANÁLISE DE VENTILAÇÃO URBANA

O USO DAMESA D’ÁGUACOMO FERRAMENTA DE PROJETO

Authors

  • Milena Chierrito Oliveira Universidade Estadual de Maringá
  • Emmanuely Karine Fernandes da Paz Universidade Estadual de Maringá
  • Rosilene Regolão Brugnera Universidade Estadual de Maringá
  • Marieli Azoia Lukiantchuki Universidade Estadual de Maringá

Keywords:

natural ventilation, water-table, design process, urban configurations

Abstract

Studies on natural ventilation are complex and require practical tools for it to be applied to the design process. Rehearsals on the water-table are used to assess the behavior of the airflow in consequence of the urban morphology in question. Due to its simplicity and low cost, the water-table becomes an important apparatus to support the act of designing. Thus, this paper aims to disclose the use of physical scale models and rehearsals on the water-table as means to back up the design process in terms of understanding the features of urban ventilation. In order to reach that, scaled urban experiments were conducted using the water-table at LACAEUEM. The methods were categorized in two steps: 1) definition and making of generic physical scale models to be tested in multiple urban built environments in three sizes: 3 cm, 6 cm, and 12 cm; 2) experimental rehearsals on the water-table. The results indicate that the water-table is a relevant tool of qualitative analysis on comprehension of wind-driven natural ventilation in the urban environment, showing that its use can support the design process since college.

Published

2023-10-02

How to Cite

OLIVEIRA, Milena Chierrito; PAZ, Emmanuely Karine Fernandes da; BRUGNERA, Rosilene Regolão; LUKIANTCHUKI, Marieli Azoia. MODELOS FÍSICOS PARA ANÁLISE DE VENTILAÇÃO URBANA: O USO DAMESA D’ÁGUACOMO FERRAMENTA DE PROJETO. In: ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO, 16., 2021. Anais [...]. [S. l.], 2021. p. 1057–1066. Disponível em: https://eventos.antac.org.br/index.php/encac/article/view/4504. Acesso em: 23 nov. 2024.

Issue

Section

3. Conforto Térmico