BIG DATA, MACHINE LEARNING E CLOUD COMPUTING NA GESTÃO DE OBRAS: UMA REVISÃO SISTEMÁTICA DA LITERATURA
DOI:
https://doi.org/10.46421/entac.v18i.1186Palavras-chave:
Big Data, Machine Learning, Cloud Computing, Gestão de obras, Construção civilResumo
O presente estudo buscou identificar as principais contribuições do uso das ferramentas Big Data, Machine Learning e Cloud Computing no campo da gestão de obras de construção civil. Para isso, realizou-se uma Revisão Sistemática da Literatura (RSL) nas principais bases de dados de pesquisa científica internacional e selecionou-se 37 artigos a respeito do tema. As análises mostraram que a utilização dessas ferramentas na construção civil é incipiente e relacionada em sua maioria ao uso da metodologia BIM e suas ferramentas, principalmente no Machine Learning e Big Data. Constatou-se que a construção civil ainda precisa avançar mais no uso de tais ferramentas, a fim de utilizar na sua totalidade o que a tecnologia tem a oferecer.
Referências
ACATECH, National Academy of Science and Engineering. Recommendations for implementing the strategic initiative INDUSTRIE 4.0. 2013. Disponível em: https://www.acatech.de/Publikation/recommendations-for-implementing-the-strategicinitiative-industrie-4-0- final-report-of-the-industrie-4-0-working-group/. Acesso em: 10 maio 2019.
AKHAVIAN, Reza; BEHZADAN, Amir H.. Smartphone-based construction workers' activity recognition and classification. Automation In Construction, v. 71, p.198-209, nov. 2016.
AKINYEMI, Abiodun; SUN, Ming; GRAY, Alasdair J G. An ontology-based data integration framework for construction information management. Proceedings Of The Institution Of Civil Engineers - Management, Procurement And Law, v. 171, n. 3, p.111-125, jun. 2018.
ATUAHENE, Bernard Tuffour; KANJANABOOTRA, Sittimont; GAJENDRAM, Thayaparan. Towards na Integrated Framework of Big Data Capabilities in the Construction Industry: A Systematic Literature Review. In: 34th Association of Researchers in Construction Management (ARCOM), 34, Belfast, 2018. Anais... Newcastle: ARCOM, 2018.
Beach, T.H., Rana, O.F., Rezgui, Y. and Parashar, M. Cloud computing for the architecture, engineering & construction sector: requirements, prototype & experience. Journal of Cloud Computing, v. 2, n. 8, p.1–16, 2013.
BILAL, M. et al. Big data architecture for construction waste analytics (CWA): A conceptual framework. Journal of Building Engineering, v. 6, p. 144-156, 2016.
CHENG, Chieh-feng et al. Activity analysis of construction equipment using audio signals and support vector machines. Automation In Construction, v. 81, p.240-253, set. 2017.
DAVIES, A.; SHARP, D. RICS Strategic Facilities Management. Case studies, International Workplace, Cambridge, Report, 2014.
DRATH, R.; HORCH, A. Industrie 4.0: Hit or hype? IEEE industrial electronics magazine, v. 8, n. 2, p. 56– 58, 2014.
DRESCH, Aline; LACERDA, Daniel Pacheco; ANTUNES JÚNIOR, José Antonio Valle. Design Science research: método de pesquisa para avanço da ciência e tecnologia. Porto Alegre: Bookman, 2020.
FANG et al. Case Study of BIM and Cloud–Enabled Real-Time RFID Indoor Localization for Construction Management Applications. Journal of Construction Engineering and Management, v. 142, n. 7, 2016.
FATHI, Mohamad Syazli; RAWAI, Norshakila; ABEDI, Mohammad. Mobile Information System forSustainable Project Management. Applied Mechanics And Materials, v. 178-181, p.2690-2693, mai. 2012.
GALVÃO, Taís Freire; PEREIRA, Mauricio Gomes. Revisões sistemáticas da literatura: passos para sua elaboração. Epidemiologia e Serviços de Saúde, v. 23, n. 1, p.183-184, mar. 2014.
GETULI, Vito et al. A BIM-based Construction Supply Chain Framework for Monitoring Progress and Coordination of Site Activities. Procedia Engineering, v. 164, p.542-549, 2016.
GONG, Jie; AZAMBUJA, Marcelo. Visualizing Construction Supply Chains with Google Cloud Computing Tools. International Conference on Sustainable Design and Construction, p.671-678, nov. 2012. Anais... United States: ICSDES, 2012.
HEMANTH, Guggilla et al. AHP analysis for using cloud computing in supply chain management in the construction industry. 2nd International Conference For Convergence In Technology, abr. 2017. Anais... Índia: I2CT, 2017LEE, S.; LEE, H. A study on estimation method of concrete compressive strength based on machine learning algorithm considering mixture factor. Journal of the Korea Institute of Building Construction, 17(1):152– 153, 2017.
PORTO, Gabriele de Bonis Patekoski; KADLEC, Thalita Malucelli de Moraes. Mapeamento de estudos prospectivos de tecnologias na revolução 4.0: um olhar para a indústria da construção civil. 2018. 70 f. TCC (Graduação) - Curso de Engenharia Civil, Departamento Acadêmico de Construção Civil, Universidade TecnolÓgica Federal do ParanÁ, Curitiba, 2018.
POSENATO, D. et al. Methodologies for model-free data interpretation of civil engineering structures. Computers & structures, v. 88, n. 7, p. 467-482, 2010.
RAM, J.; AFRIDI, N. K.; KHAN, K. A. (2019). Adoption of Big Data analytics in construction: development of a conceptual model. Built Environment Project and Asset Management, v. 9, n. 4, 2019.
SAHIN, Meral et al. A simulation case study on supply chain management of a construction firm adopting cloud computing and RFID. International Journal Of Industrial And Systems Engineering, [s.l.], v. 27, n. 2, p.233- 254, 2017.
SAKURAI, R.; ZUCHI, J. D. As revoluções industriais até a indústria 4.0. Interface Tecnológica, v.15, n.2, 2018.
SANTOS, Asaffe C. M. dos. Aprendizado de máquina aplicado ao diagnóstico de Dengue.
ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL, 13., 2016, Recife.12p.
SHUANG, Dong et al. An experimental study of intrusion behaviors on construction sites: The role of age and gender. Safety Science, [s.l.], v. 115, p.425-434, jun. 2019.
SOUSA, F. R. C.; MOREIRA, L. O.; MACHADO, J. C. Computação em nuvem: conceitos, tecnologias, aplicações e desafios. Anais da II Escola Regional de Computação Ceará, Maranhão e Piauí (ERCEMAPI). 2009. Cap. 7, p. 150-175.
TANG, Shu et al. A review of building information modeling (BIM) and the internet of things (IoT) devices integration: Present status and future trends. Automation In Construction, [s.l.], v. 101, p.127-139, maio 2019.
TIXIER, Antoine J.-p. et al. Application of machine learning to construction injury prediction.
Automation In Construction, [s.l.], v. 69, p.102-114, set. 2016.
YANG, Jun; SHI, Zhongke; WU, Ziyan. Vision-based action recognition of construction workers using dense trajectories. Advanced Engineering Informatics, [s.l.], v. 30, n. 3, p.327-336, ago. 2016.
ZHENG, Rongyue et al. BcBIM: A Blockchain-Based Big Data Model for BIM Modification Audit and Provenance in Mobile Cloud. Mathematical Problems In Engineering, [s.l.], v. 2019, p.1-13, 18 mar. 2019.