Identificação de padrões térmicos no município de Porto Alegre, RS, através de sensoriamento remoto

Autores

DOI:

https://doi.org/10.46421/entac.v19i1.2073

Palavras-chave:

Temperatura Superficial, Landsat-8, Ilha de calor urbano, Ilha de Frescor Urbano, Análise de Hot Spots e Cold Spots

Resumo

O processo de urbanização pode influenciar as condições climáticas locais, influenciando no campo térmico da cidade e no consumo energético para a climatização de edificações. Nesse sentido, este trabalho busca identificar áreas com potencial para formação de ilhas de calor e frescor, na cidade de Porto Alegre/RS. A estimativa das temperaturas superficiais, baseou-se em imagens do satélite Landsat-8. Para identificação das áreas mais suscetíveis, foi realizada uma análise de hot spots e cold spots. Foi possível identificar os locais mais críticos da cidade, em termos da formação de ilhas de calor e frescor, considerando os cenários de verão e inverno.

Biografia do Autor

Alline Gomes Lamenha e Silva, Instituto Federal de Alagoas

Mestrado em Engenharia Civil pela Universidade Federal do Rio de Janeiro (Rio de Janeiro - RJ, Brasil). Doutoranda em Engenharia Civil na Universidade Federal do Rio Grande do Sul (Porto Alegre - RS, Brasil) e Professora EBTT no Instituto Federal de Educação, Ciência e Tecnologia de Alagoas (Penedo - AL, Brasil).

Isabel Rosa de Carvalho, Universidade Federal do Rio Grande do Sul

Cursando Geografia na Universidade Federal do Rio Grande do Sul (Porto Alegre - RS, Brasil).

João Pedro Silva Barbosa, Universidade Federal do Rio Grande do Sul

Cursando Geografia na Universidade Federal do Rio Grande do Sul (Porto Alegre - RS, Brasil).

Maurício Carvalho Ayres Torres, Universidade Federal do Rio Grande do Sul

Doutor em Engenharia Civil pela Universidade Politécnica da Catalunha (Barcelona, Espanha). Professor Adjunto na Universidade Federal do Rio Grande do Sul (Porto Alegre - RS, Brasil).

Referências

FERREIRA, F.; ANDRADE, W. Urban Climate Assessment of Urban Heat Islands in Brazil based on MODIS remote sensing data. Urban Climate. v. 35, nov. 2020. DOI: https://doi.org/10.1016/j.uclim.2020.100726.

GETIS, A.; ORD, J.K. The Analysis of Spatial Association, Geogr. Anal. v. 24, n. 3, p. 189–206, jul. 1992. DOI: https://doi.org/10.1111/j.1538-4632.1992.tb00261.x.

GORELICK, N; HANCHER, M.; DIXON, M.; ILYUSHCHENKO, S.; THAU, D.; MOORE, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ. v. 202, p. 18–27, dez. 2017. DOI: https://doi.org/10.1016/j.rse.2017.06.031.

HOWARD, L. The climate of London: deduced from meteorological observations made in the metropolis. Londres, 1818.

IBGE. Diário Oficial da União DOU, Brasil, 2020. https://doi.org/1677-7042.

INMET. Estação Meteorológica de Porto Alegre. 2022. Disponível em: https://bdmep.inmet.gov.br.

LOMBARDO, M. Ilha de Calor nas Metrópoles: O exemplo de São Paulo. São Paulo, 1985.

OLIVEIRA, M. T.; GANEM, K. A.; BAPTISTA, G. M. M. Análise sazonal da relação entre sequestro de carbono e ilhas de calor urbanas nas metrópoles de São Paulo, Rio de Janeiro, Belo Horizonte e Brasília. Revista Brasileira de Cartografia, v. 69, n. 4, 2017.

PALME, M.; INOSTROZA, L.; VILLACRESES, G.; LOBATO-CORDERO, A.; CARRASCO, C.. From urban climate to energy consumption. Enhancing building performance simulation by including the urban heat island effect. Energy Build. v. 145, p. 107–120, jun. 2017. DOI: https://doi.org/10.1016/j.enbuild.2017.03.069.

PENG, W.; WANG, R.; DUAN, J.; GAO, W.; FAN, Z. Surface and canopy urban heat islands: Does urban morphology result in the spatiotemporal differences? Urban Clim. v. 42, n. 101136, mar. 2022. DOI: https://doi.org/10.1016/j.uclim.2022.101136.

Projeto MapBiomas - Coleção 6 da Série Anual de Mapas de Uso e Cobertura da Terra do Brasil, acessado em jul. 2022, através do link: https://mapbiomas.org/

SAHA, S.; SAHA, A.; DAS, M.; SAHA, A.; SARKAR, R.; DAS, A. Analyzing spatial relationship between land use/land cover (LULC) and land surface temperature (LST) of three urban agglomerations (UAs) of Eastern India. Remote Sens. Appl. Soc. Environ. v. 22, n. 100507, abr. 2021. DOI: https://doi.org/10.1016/j.rsase.2021.100507.

SAYLER, K.; GLYNN, T. Landsat 8 Level 2 Science Product (L2SP) Guide. v. 2, p. 1–43, mar. 2022. Disponível em: https://prd-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS-1619_Landsat8-C2-L2-ScienceProductGuide-v2.pdf.

SHI, D.; SONG, J.; HUANG, J.; ZHUANG, C.; GUO, R.; GAO, Y. Synergistic cooling effects (SCEs) of urban green-blue spaces on local thermal environment: A case study in Chongqing, China. Sustain. Cities Soc. v. 55, p. 1-16, jan. 2020. DOI: https://doi.org/10.1016/j.scs.2020.102065.

WU, W.; YU, Z.; MA, J.; ZHAO, B. Quantifying the influence of 2D and 3D urban morphology on the thermal environment across climatic zones, Landsc. Urban Plan. v. 226, n. 104499, out. 2022. DOI: https://doi.org/10.1016/j.landurbplan.2022.104499.

YANG, C.; YAN, F.; LEI, X.; DING; X.; ZHENG; Y.; LIU, L.; ZHANG, S. Investigating seasonal effects of dominant driving factors on urban land surface temperature in a snow-climate city in China. Remote Sens. v. 1, n. 18, p. 1–19, set. 2020. DOI: https://doi.org/10.3390/RS12183006.

ZINZI, M.; CARNIELO, E.; MATTONI, B. On the relation between urban climate and energy performance of buildings. A three-years experience in Rome, Italy. Appl. Energy. v. 221, p. 148–160, jul. 2018. DOI: https://doi.org/10.1016/j.apenergy.2018.03.192.

ZORZI, L. A influência dos parques verdes no conforto térmico urbano: estudo de caso em Porto Alegre - RS. 174 f. Dissertação (Mestrado em Planejamento Urbano e Regional). Universidade Federal do Rio Grande do Sul, Porto Alegre, 2016.

Downloads

Publicado

07/11/2022

Como Citar

SILVA, A. G. L. e; CARVALHO, I. R. de; BARBOSA, J. P. S.; TORRES, M. C. A. Identificação de padrões térmicos no município de Porto Alegre, RS, através de sensoriamento remoto. In: ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO, 19., 2022. Anais [...]. Porto Alegre: ANTAC, 2022. p. 1–11. DOI: 10.46421/entac.v19i1.2073. Disponível em: https://eventos.antac.org.br/index.php/entac/article/view/2073. Acesso em: 14 maio. 2024.

Edição

Seção

Conforto Ambiental e Eficiência Energética