Estudo da potencialidade do uso da velocidade do ar na economia de energia em um edifício automatizado
DOI:
https://doi.org/10.46421/entac.v20i1.5896Palavras-chave:
conforto térmico, ventilação natural, ventiladores de teto, pmv, energyplusResumo
A necessidade de resfriamento de ambientes torna-se cada vez mais urgente em meio ao cenário de aquecimento global. No entanto, a maneira como esse resfriamento é abordado requer estudo aprofundado. O território brasileiro, em sua maioria, caracteriza-se por um clima quente e úmido e uma abordagem eficaz para melhorar a sensação térmica nesses locais é a adoção de estratégias simples de resfriamento baseadas na movimentação do ar, através do uso de ventiladores e da promoção da ventilação natural. Nesse sentido, a pesquisa tem como objetivo verificar a influência da utilização da velocidade do ar com o uso de ventiladores de teto na economia de energia em uma edificação eficiente de operação de modo misto por meio de simulação computacional. Utilizando o software EnergyPlus 9.4 em conjunto com a versão 0.2 da API utilizando a linguagem Python. Essa abordagem permite o gerenciamento das aberturas das janelas em condições favoráveis, além de controlar a ventilação e definir o ponto de ajuste do ar-condicionado conforme o conforto dos usuários. Essa gestão eficiente não só resulta em economia de energia, mas também prioriza o conforto dos ocupantes.
Referências
BERARDI, Umberto. A cross-country comparison of the building energy consumptions and their trends. Resources, Conservation and Recycling, v. 123, p. 230-241, 2017. ISSN 0921-3449. Disponível em: https://doi.org/10.1016/j.resconrec.2016.03.014.
INTERNATIONAL ENERGY AGENCY (IEA). The Future of Cooling. Paris, 2018. Disponível em: https://www.iea.org/reports/the-future-of-cooling. Acesso em: 05 maio. 2022.
HOOFF, T. van; BLOCKEN, B.; HENSEN, J.L.M.; TIMMERMANS, H.J.P. On the predicted effectiveness of climate adaptation measures for residential buildings. Building and Environment, v. 82, p. 300-316, 2014. ISSN 0360-1323. https://doi.org/10.1016/j.buildenv.2014.08.027.
SCHIAVON, Stefano; LEE, Kwang Ho. Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures. Building and Environment, vol. 59, p. 250-260, 2013. DOI: https://doi.org/10.1016/j.buildenv.2012.08.024.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15575: Edifícios habitacionais de até cinco pavimentos, Parte 1: Requisitos gerais. Rio de Janeiro: ABNT, 2008.
MORELLO, Alessandro. Avaliação do comportamento térmico do protótipo habitacional Alvorada. 2005.
KIM, Jungsoo; DE DEAR, Richard. Is mixed-mode ventilation a comfortable low-energy solution? A literature review. Building and Environment, v. 205, p. 108215, 2021.
CÂNDIDO, C.; DE DEAR, R.; LAMBERTS, R. Combined Thermal Acceptability and Air Movement Assessments in a Hot Humid Climate. Building and Environment, v. 46, p. 379-385, 2011. DOI:10.1016/j.buildenv.2010.07.032
DE VECCHI, R.; CÂNDIDO, C.; LAMBERTS, R. O efeito da utilização de ventiladores de teto no conforto térmico em salas de aulas com condicionamento híbrido em um local de clima quente e úmido. Ambiente Construído, Porto Alegre, v. 13, n. 4, p. 189-202, 2013.
LAMBERTS, Roberto; CÂNDIDO, Christhina; DE VECCHI, Renata. Base brasileira de conforto térmico. 2014. Disponível em: https://labeee.ufsc.br/projetos/base-brasileira-de-dados-em-conforto-termico. Acesso em 20 de março de 2023.
OMRANI, Sara; MATOUR, Soha; BAMDAD, Keivan; IZADYAR, Nima. Ceiling fans as ventilation assisting devices in buildings: A critical review. Building and Environment, Volume 201, 2021. DOI: https://doi.org/10.1016/j.buildenv.2021.108010.
LIPCZYNSKA, Aleksandra; SCHIAVON, Stefano; GRAHAM, Lindsay T. Thermal comfort and self-reported productivity in an office with ceiling fans in the tropics. Building and Environment, v. 135, p. 202-212, 2018.
MILLER, Dana; RAFTERY, Paul; NAKAJIMA, Mia; SALO, Sonja; GRAHAM, Lindsay T; PEFFER, Therese; DELGADO, Marta; ZHANG, Hui; BRAGER, Gail; DOUGLASS-JAIMES, David; PALIAGA, Gwelen; COHN, Sebastian; GREENE, Mitch; BROOKS, Andy. Cooling energy savings and occupant feedback in a two year retrofit evaluation of 99 automated ceiling fans staged with air conditioning. Energy and Buildings. Volume 251, 2021. DOI: https://doi.org/10.1016/j.enbuild.2021.111319.
ASHRAE. Standard 55: thermal environmental conditions for human occupancy. ASHRAE: Atlanta, 2020.
MORELLO, Alessandro. Avaliação do comportamento térmico do protótipo habitacional Alvorada. 2005.
DOE. V9.3 Input/output reference: The encyclopedic reference to EnergyPlus input and output. US Department of Energy, [S.l.], 2021.
SCHIAVON, Stefano; LEE, Kwang Ho. Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures. Building and Environment, vol. 59, p. 250-260, 2013. DOI: https://doi.org/10.1016/j.buildenv.2012.08.024.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 16401-2: instalações de ar-condicionado: sistemas entrais e unitários: parte 2: parâmetros de conforto térmico. Rio de Janeiro, 2008.
PHILIP, S.; TANJUATCO, L. Eppy: scripting language for E+. EnergyPlus (version 0.46). Disponível em: https://pypi. python. org/pypi/eppy/0.4, [S.l.], v.6, 2011.
ANDRE, Maira et al. Achieving mid-rise NZEB offices in Brazilian urban centres: A control strategy with desk fans and extension of set point temperature. Energy and Buildings, v. 259, p. 111911, 2022.