CAPTURA DE CO2 DEVIDO À CARBONATAÇÃO DE MATERIAIS CIMENTÍCIOS: ABORDAGEM GERAL
DOI:
https://doi.org/10.46421/entac.v17i1.1792Keywords:
CO2 uptake, CO2 sequestration, CO2 capture, Concrete, Compensatory measuresAbstract
In recent years, it has been discussed that cementitious materials, specially concrete, can capture CO2 due to carbonation, being able to compensate the cement production emissions, which is responsible for about 5% of global emissions of the gas. However, there are divergences in literature regarding the potential capture of CO2 due to carbonation. In this context, the study purpose is to make a panorama by compiling already published studies on CO2 uptake, indicating the main results found and identifying gaps in existing research. Researches was carried out in two bibliographic bases with main keywords of the subject, inserting filters. We found 22 relevant articles in the bases, which 10 were related to the experimental analyzes, 9 referring to calculation estimation through mathematical models or pre-existing data and 3 referring to "state of art " review. It was identified some frailties in calculation methodologies and the CO2 uptake potentials founded, and the future perspectives on CO2 capture context according to the papers. Therefore, the present study serves as a contribution to change cementitious materials concepts about sustainability and improve constructions life cycle analysis due to CO2 capture consideration.
References
ANDERSSON, R.; FRIDH, K.; STRIPPLE, H.; HAGLUND, M. Calculating CO2 Uptake forExisting Concrete Structures during and after Service Life. Environmental Science &Technology, v. 47, n. 20, p.11625-11633, 2013.
BORREGO, M.; FOSTER, M.J.; FROYD, J. E. Systematic Literature Reviews in EngineeringEducation and Other Developing Interdisciplinary Fields. Journal Of EngineeringEducation, v. 103, n. 1, p.45-76, 2014.
COLLINS, F. Inclusion of carbonation during the life cycle of built and recycledconcrete: influence on their carbon footprint. The International Journal Of Life CycleAssessment, v. 15, n. 6, p.549-556, 2010.
GAJDA, J. Absorption of atmospheric carbon dioxide by portland cement concrete.
PCA, R & D, Chicago. Serial n. 2255a, 2001.
GALAN, I.; ANDRADE, C.; MORA, P.; SANJUAN, M.A. Sequestration of CO2 byConcrete Carbonation. Environmental Science & Technology, v. 44, n. 8, p.3181-3186, 2010.
GANDÍA-ROMERO, J.M.; CAMPOS, I.; VALCUENDE, M.; GARCÍA-BREIJO, E.; MARCOS,M.D.; PAYÁ, J.; SOTO, J. Potentiometric thick-film sensors for measuring the pH ofconcrete. Cement And Concrete Composites, v. 68, p.66-76, 2016.
GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. Life cycle greenhouse gas emissions ofblended cement concrete including carbonation and durability. The InternationalJournal Of Life Cycle Assessment, v. 19, n. 1, p.3-12, 2013.
GHACHAM, A.B.; CECCHI, E; PASQUIER, L-C; BLAIS, J-F. CO2 sequestration using wasteconcrete and anorthosite tailings by direct mineral carbonation in gas solid liquidand gas solid routes. Journal Of Environmental Management, v. 163, p.70-77, 2015.
HASELBACH, L.; THOMAS, A. Carbon sequestration in concrete sidewalk samples.
Construction And Building Materials, v. 54, p.47-52, 2014.
JACOBSEN, S.; JAHREN, P. Binding of CO2 by Carbonation of Norwegian OPCConcrete', CANMET. In: ACI International conference on sustainability and concretetechnology: Lyon. 2002.
JANG, J.; KIM, H.J.; KIM, H.J.; LEE, H.K. Review on recent advances in CO 2 utilizationand sequestration technologies in cement-based materials. Construction Andbuilding materials, v. 127, p.762-773, 2016.
KINOSHITA, H.; CIRCHIRILLO,C; SANMARTIN, J; UTTON, C.A.; BORGES, P.H.R.; LYNSDALE,C.J.; MILESTONE, N.B.. Carbonation of composite cements with high mineraladmixture content used for radioactive waste encapsulation. Minerals Engineering,v. 59, p.107-114, 2014.
KIKUCHI, T.; KURODA, Y.Carbon dioxide uptake in demolished and crushed concrete.
Journal of Advanced Concrete Technology., v. 9, n. 1, p.115-124, 2011.
KUITTINEN, M. Does the use of recycled concrete lower the carbon footprint inhumanitarian construction? International Journal Of Disaster Resilience In The BuiltEnvironment, v. 7, n. 5, p.472-488, 2016.
LAGERBLAD, B. Carbon dioxide uptake during concrete life cycle State of the art. NordicInnovation Centre project, 2005. Swedish Cement and Concrete Research Institute.
LEE, M-G.; KANG, D.; JO, H.; PARK, J. Carbon dioxide utilization with carbonationusing industrial waste-desulfurization gypsum and waste concrete. Journal of materialCycles and waste management, v. 18, n. 3, p.407-412, 2016.
LEE, H-S; WANG, X-Y. Evaluation of the Carbon Dioxide Uptake of Slag-BlendedConcrete Structures, Considering the Effect of Carbonation. Sustainability, v. 8, n. 4,p.1-18, 2016.
LIMA, J. A. R. Avaliação das consequências da produção de concreto no Brasil paraas mudanças climáticas. 2010. 129 f. Tese (Doutorado em Engenharia)Departamento de Engenharia de Construção Civil, Escola Politécnica daUniversidade de São Paulo, São Paulo, 2010.
MORETTI, L.; CARO, S. Critical analysis of the Life Cycle Assessment of the Italiancement industry. Journal Of Cleaner Production, v. 152, p.198-210, 2017.
OLIVIER, J.G.J., JANSSENS-MAENHOUT, G., MUNTEAN, M., PETERS, J.A.H.W. Trends inglobal CO2 emissions. 2015. Disponível em: <http://edgar.jrc.ec.europa.eu/news_docs/jrc-2015-trends-in-global-co2-emissions 2015-report-98184.pdf>. Acesso em 22 demaio de 2017.
PADE, C.; GUIMARÃES, M. The CO2 uptake of concrete in a 100 year perspective.
Cement And Concrete Research, v. 37, n. 9, p.1348-1356, 2007.
POSSAN, E.; THOMAZ, W.A.; ALEANDRI, G.A.; FELIX, E.F.; SANTOS, A.C.P. CO2 uptakepotential due to concrete carbonation: A case study. Case Studies In ConstructionMaterials, v. 6, p.147-161, 2017.
SOUTO-MARTINEZ, A.; DELESKY, E.A.; FOSTER, K.E.O.; SRUBAR III, W.V. A mathematicalmodel for predicting the carbon sequestration potential of ordinary portland cement(OPC) concrete. Construction and building materials, v. 147, p.417-427, 2017.
UENO, A.; KAWAI, K.; KOBAYASHI, K.; TANAKA, S. Evaluation of visual methods for CO2uptake by demolished concrete: Research activities by JSCE subcommittee 219.
Construction And Building Materials, v. 67, p.393-398, 2014.
WITKOWSKI, H.; KONIORCZYK, M.. Self compacting concrete CO2 uptake. In: SecondInternational Conference on Concrete Sustainability. Madrid, p. 1056-1066, 2016.
XI,F; DAVIS, S.J.; CIAIS, P.; CRAWFORD-BROWN, D.; GUAN, D.; PADE, C.; SHI, T.;SYDDALL, M.; LV, J.; LANZHU, J.; BING, L.; WANG, J.; WEI, W.; YANG, K.- H.; LAGERBLAD,B.; GALAN, I.; ANDRADE, C.; ZHANG, Y.; LIU,Z. Substantial global carbon uptake bycement carbonation. Nature Geoscience, v. 9, n. 12, p.880-883, 2016.
YANG, K-H.; SEO, E-A.; TAE, S-H.. Carbonation and CO2 uptake of concrete.
Environmental Impact Assessment Review, v. 46, p.43-52, 2014.
ZHANG, L. N.; LI, F. C.; YU, X. Life Cycle Assessment of CO2 Emission of ConcreteConsidering Carbonation and Structural Element Types. Key engineering materials, v.730, p.375-379, 2017.
ZEE, S. V. der; ZEMAN, F.. Production of carbon negative precipitated calciumcarbonate from waste concrete. The canadian journal of chemical engineering, v.94, n. 11, p.2153-2159, 2016.