DESENVOLVIMENTO DE APARATO MODULAR PARA AQUISIÇÃO DE DADOS AMBIENTAIS GEORREFERENCIADOS

Authors

  • Marcelo Rezende Calça Soeira
  • Cláudia Cotrim Pezzuto

DOI:

https://doi.org/10.46421/entac.v17i1.1868

Keywords:

Urban climate, Microclimate, Mobile measurement, Low cost sensor, Arduino

Abstract

The pursuit of sustainable urban development pathways demands better comprehension of the influences exerted by the urban fabric on local microclimates. Therefore, improvement of the tools and methods currently available for obtaining urban climatic data is of considerable importance. This study proposes a modular experimental instrument for georeferenced environmental data acquisition, geared towards the application of mobile measurement methodology. The prposed instrument's performance was compared to that of a reference equipment across three mobile measurement campaigns. While results show that the data collected by both instruments are in agreement, the acquisition capacity of the proposed instrument far exceeds that of the reference equipment in regards to measurement resolution, precision, frequency and storage, for a much lower cost. application was deemed suitable for urban climate research

References

ARDUINO. Arduino Mega 2560 rev3. Catálogo de produto. 2018. Disponívelem: < https://store.arduino.cc/usa/arduino-mega-2560-rev3>. Acesso em: 02abril 2018CARDOSO, R. et al. Assessment of Urban Heat Islands in Small- and Mid-SizedCities in Brazil. Climate, v. 5, n. 1, p. 14, 2017.

CHEN, L. et al. Sky view factor analysis of street canyons and its implicationsfor daytime intra-urban air temperature differentials in high-rise, high-densityurban areas of Hong Kong: A GIS-based simulation approach. InternationalJournal of Climatology, v. 32, n. 1, p. 121 136, 2012.

DFROBOT. LCD KeyPad Shield For Arduino SKU: DFR0009. Manual de produto.

2017. Disponível em: <https://www.dfrobot.com/wiki/index.php/LCD_KeyPad_Shield_For_Arduino_SKU:_DFR0009>. Acesso em: 02 de abril, 2018.

GEEETECH. Arduino SD Card Module. Manual de produto. 2014. Disponívelem: <https://www.geeetech.com/wiki/index.php/Arduino_SD_card_Module>. Acesso em: 02 de abril, 2018.

HÄB, K.; RUDDELL, B. L.; MIDDEL, A. Sensor lag correction for mobile urbanmicroclimate measurements. Urban Climate, v. 14, p. 622 635, 2015.

KETTERER, C.; MATZARAKIS, A. Comparison of different methods for theassessment of the urban heat island in Stuttgart, Germany. International Journal of Biometeorology, v. 59, n. 9, p. 1299 1309, 2015.

KONARSKA, J. et al. Influence of vegetation and building geometry on thespatial variations of air temperature and cooling rates in a high-latitude city.

International Journal of Climatology, v. 36, n. 5, p. 2379 2395, 2016.

KRÜGER, E. L.; MINELLA, F. O.; RASIA, F. Impact of urban geometry on outdoorthermal comfort and air quality from field measurements in Curitiba, Brazil.

Building and Environment, v. 46, n. 3, p. 621 634, 2011.

LECONTE, F. et al. Using Local Climate Zone scheme for UHI assessment:Evaluation of the method using mobile measurements. Building andEnvironment, v. 83, p. 39 49, 2015.

LIU, L. et al. Analysis of local-scale urban heat island characteristics using anintegrated method of mobile measurement and GIS-based spatialinterpolation. Building and Environment, v. 117, p. 191 207, 2017.

MAXIM INTEGRATED. DS 3231 RTC General DescriptionData Sheet, 2015.

Disponível em: <https://datasheets.maximintegrated.com/en/ds/DS3231.pdf>. Acesso em: 02 de abril, 2018.

MEIER, F. et al. Urban Climate Crowdsourcing air temperature from citizenweather stations for urban climate research. Urban Climate, v. 19, p. 170 191,2017.

NG, E.; REN, C. Urban Climate China's adaptation to climate & urban climaticchanges : A critical review. Urban Climate, v. 23, p. 352 372, 2018.ROBOTIC SOLUTIONS. HC- 2015.

Disponível em: < https://www.gme.cz/data/attachments/dsh.772-148.1.pdf>.Acesso em: 02 de abril, 2018.

SENSIRION. Humidity and Temperature Sensor IC Fully calibrated Digital outputLow power consumption Excellent long term stability Pin type package easyintegrationData Sheet, 2011. Disponível em: <https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/2_Humidity_Sensors/Sensirion_Humidity_Sensors_SHT7x_Datasheet.pdf> . Acesso em: 02 de abril, 2018.

SKARBIT, N. et al. Employing an urban meteorological network to monitor airtemperature cInternational Journal of Climatology, v. 37, n. March, p. 582 596, 2017.and model simulations.

International Journal of Climatology, v. 34, n. 4, p. 1062 1080, 2014.

TSIN, P. K. et al. Microscale mobile monitoring of urban air temperature. UrbanClimate, v. 18, p. 58 72, 2016.

U-BLOX. NEO-6 GPS Modules Data SheetData Sheet, 2011. Disponível em:<https://www.u-blox.com/sites/default/files/products/documents/NEO-6_DataSheet_(GPS.G6-HW-09005).pdf>. Acesso em: 02 de abril, 2018.

WONG, P. P.-Y. et al. The impact of environmental and human factors onurban heat and microclimate variability. Building and Environment, v. 95, n.JANUARY, p. 199 208, 2016.

YANG, X.; LI, Y. The impact of building density and building heightheterogeneity on average urban albedo and street surface temperature.

Building and Environment, v. 90, p. 146 156, 2015.

Published

2018-11-12

How to Cite

SOEIRA, Marcelo Rezende Calça; PEZZUTO, Cláudia Cotrim. DESENVOLVIMENTO DE APARATO MODULAR PARA AQUISIÇÃO DE DADOS AMBIENTAIS GEORREFERENCIADOS. In: NATIONAL MEETING OF BUILT ENVIRONMENT TECHNOLOGY, 17., 2018. Anais [...]. Porto Alegre: ANTAC, 2018. p. 4158–4170. DOI: 10.46421/entac.v17i1.1868. Disponível em: https://eventos.antac.org.br/index.php/entac/article/view/1868. Acesso em: 5 nov. 2024.

Similar Articles

<< < 46 47 48 49 50 51 52 53 54 55 > >> 

You may also start an advanced similarity search for this article.