Fire resistance of a vertical structural sealing system with expanded polystyrene core
DOI:
https://doi.org/10.46421/entac.v19i1.2015Keywords:
Fire resistance, reaction to fire, EPS, sustaintability, fire safetyAbstract
This work analyzed the behavior of a sealing system with expanded polystyrene (EPS) core, in terms of fire resistance criteria and the behavior of the EPS core in relation off ire reaction. The analysis was made by laboratory tests following the Brazilian standards NBR 5628:2001 e NBR 16965:2021. system presented failure of its bearing capacity, at 17 minutes, due to the conjunct action of thermal bow phenomenon and the loading. For this, by standard criteria, its integrity and thermal insulation loss was declared. Regarding the fire reaction tests, it was observed that the EPS degraded when the temperature of 210 °C was reached, but it did not present continuous flames or excessive smoke.
References
SULONG, N. H. R; MUSTAPA, S. A. S; RASHID, M. K. A. Application of expanded polystyrene (EPS) in buildings and construction: A review. Journal of Applied Polymer Science, p – 47529 – 47548, 2019, DOI: 10.1002/APP.47529
DOROUDIANI, S.; OMIDIAN H. Environmental health and safety concerts of decorative mouldings made of expaned polystyrene in buildings. Building and Environment, v. 45, p- 647-654, 2010. DOI: 10.1016/j.buildenv.2009.08.004
A. Michel Murillo, G. Valery Abisambra, P. Aura Acosta, Q. Claudia Quesada, Bernardo F. Tutikian, Hinoel Z. Ehrenbring. Comparison of the fire resistance behaviour of structural insulated panels with expanded polystyrene core treated with intumescent coating. Journal of Materials Research and Technology, v. 12, p 1958-1969, 2021. DOI: 10.1016/j.jmrt.2021.03.079.
Luyao Wang, Cheng Wang, Pingwei Liu, Zhijiao Jing, Xuesong Ge, Yijun Jiang. The flame resistance properties of expandable polystyrene foams coated with a cheap and effective barrier layer. Construction and Building Materials, v. 176, p. 403-414, 2018. DOI: 10.1016/j.conbuildmat.2018.05.023.
MAHDI, S; MOHAMED ALI, M.S.; SHEIKH, A.H; ELCHALAKANI, M.; XIE, T. An investigation into the feasibility of normal and fibre-reinforced ultra-high performance concrete multi-cell and composite sandwich panels. Journal of Building Enginnering, v. 41. DOI: 10.1016/j.jobe.2021.102728
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 5628 - Componentes construtivos estruturais - determinação de resistência ao fogo. Rio de Janeiro, 2001.
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 11925-2 - Reaction to fire tests. Ignitability of products subjected to direct impingement of flame Single-flame source test. 2022
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 1182 - Reaction to fire tests for products - non-combustibility test. 2013
AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM E662 - Specific Optical Density of Smoke Generated by Solid Materials. 2021
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 16965 - Ensaio de resistência ao fogo de elementos construtivos – Diretrizes gerais. Rio de Janeiro, 2021.
NADJAI, A.; O’GARRA, M.; ALI, F. Finite element modelling of compartment masonry walls in fire. Computers & Structures, v. 81, p. 1923 – 1930, 2003. DOI: 10.1016/S0045-7949(03)00212-8
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 14432 - Exigências de resistência ao fogo de elementos construtivos de edificações - Procedimento. Rio de Janeiro, 2001.
SOUZA, R. P. Avaliação da influência da espessura do revestimento argamassado e do carregamento no comportamento da alvenaria frente a altas temperaturas. Dissertação de mestrado – Universidade Federal do Vale do Rio dos Sinos. 2017.
DUPIM, R. H. Resistência residual de compressão de blocos, prismas e pequenas paredes de alvenaria estrutural de blocos de concreto submetidos à situação de incêndio. Dissertação de mestrado – Escola de Engenharia de São Carlos, 2019.
KHAN, M. I. Factors affecting the thermal properties of concrete and applicability of its prediction models. Buildings and Enviroment, v. 37, p. 607 – 614, 2002. DOI: 10.1016/S0360-1323(01)00061-0
KHOUKHI, M. et al. Impact of dynamic thermal conductivity change of EPS insulation on temperature variation through a wall assembly. Case Studies in Thermal Engineering, v. 25, 2021. DOI: 10.1016/j.csite.2021.100917
ABARCA, S. A. C. Obtenção de poliestireno expansível com retardância à chama via produção in situ. Dissertação de mestrado – Universidade Federal de Santa Catarina, 2010.
ZHOU, K.; GUI, Z.; HU, Y. The influence of graphene based smoke suppression agents on reducedfire hazards of polystyrene composites. Composites: Part A, v. 80, p. 217 – 227, 2016. DOI: 10.1016/j.compositesa.2015.10.029