Thermal conductivity of the soil-cement building material: a bibliometric study

Authors

DOI:

https://doi.org/10.46421/entac.v19i1.2069

Keywords:

Soil-cement block, Thermal properties, Rammed earth, Thermal analysis

Abstract

Earth building systems lack specific Brazilian standards for thermal performance. Therefore, the objective was to carry out a bibliometric study on the thermal conductivity of soil-cement and the engineering parameters that affect this property. A data survey was executed focusing on two construction systems: compressed earth blocks (CEB) and rammed earth. A range for thermal conductivity ranging from 0.7 to 1.1 (W/m.K) was observed. And the engineering parameter that exerted the greatest influence was the form of molding of the material, which leads to changes in the specific mass and the thermal capacity of the constructive component.

Author Biographies

Mayara Tartarotti Cardozo da Silva, Universidade Federal de Mato Grosso do Sul

Master's student in the Stricto Sensu Graduate Program in Energy Efficiency and Sustainability at UFMS. Graduated in Civil Engineering from the Federal University of Mato Grosso do Sul (2021). She performed an internship in a geotechnical laboratory, assisting in the execution of the As Built project of the building and test schedule (2021). She was a fellow researcher in the scientific and technological initiation project (PIBITI) in the area of energy efficiency in buildings, with presentation at a regional event (2020-2021). Interest in the areas of energy efficiency and sustainability in the context of civil engineering.

Ana Paula da Silva Milani, Federal University of Mato Grosso do Sul

Graduated in Civil Engineering from the Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP (2001), master's and doctorate in Agricultural Engineering from the State University of Campinas - UNICAMP (2005 and 2008). She is currently an associate professor at the Federal University of Mato Grosso do Sul-UFMS, working in the Postgraduate Program in Energy Efficiency and Sustainability (PPGEES) in the area of sustainability in the built environment. Member of the TerraBrasil and ProTerra Networks, cooperating with the development of architecture and construction with earth in the Ibero-American context. Coordinator of the Commission for Studies on Earth Buildings of ABNT/ CB-002/CE 002 123 009

References

ADAM, E. A.; JONES, P. J. Thermophysical properties of stabilised soil building blocks. Building and Environment, v. 30, n. 2, p. 245-253, 1995. DOI: https://doi.org/10.1016/0360-1323(94)00041-P.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 10833: Fabricação de tijolo e bloco de solo-cimento com utilização de prensa manual ou hidráulica — Procedimento. Rio de Janeiro, 2013.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15220-2: Desempenho térmico de edificações Parte 2: Métodos de cálculo da transmitância térmica, da capacidade térmica, do atraso térmico e do fator solar de elementos e componentes de edificações. Rio de Janeiro, 2005.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 15220-4: Desempenho térmico de edificações Parte 4: Medição da resistência térmica e da condutividade térmica pelo princípio da placa quente protegida. Rio de Janeiro, 2003.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 15220-5: Desempenho térmico de edificações. Parte 5: Medição da resistência térmica e da condutividade térmica pelo método fluximétrico. Rio de Janeiro, 2005.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 16814: Adobe - Requisitos e métodos de ensaio. Rio de Janeiro, 2020.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 17014: Taipa de pilão – Requisitos, procedimentos e controle. Rio de Janeiro, 2022.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR ISO 8894-2: Materiais refratários - Determinação da condutividade térmica Parte 2: Método do fio-quente (paralelo). Rio de Janeiro, 2007.

AVILA, F.; PUERTAS, E.; GALLEGO, Rl. Characterization of the mechanical and physical properties of unstabilized rammed earth: A review. Construction and Building Materials, p. 121435, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121435.

BACHAR, M. et al. Characterization of a stabilized earth concrete and the effect of incorporation of aggregates of cork on its thermo-mechanical properties: Experimental study and modeling. Construction and Building Materials, v. 74, p. 259-267, 2015. DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.106.

BAHAR, R. et al. Performance of Compacted Cement-Stabilized Soil. Cement and Concrete Composites, vol. 26, no 7, p. 811–20, 2004. DOI: https://doi.org/10.1016/j.cemconcomp.2004.01.003.

BALAJI, N. C. et al. Influence of Varying Mix Proportions on Thermal Performance of Soil-Cement Blocks. In: Proceedings of the 2nd IBPSA Italy Conference, Building Simulation Application–2015 (BSA 2015). BU Press, Bozen-Bolzano, Italy, 2015. p. 8.

BALAJI, N. C.; MANI, M.; REDDY, B. V. V. Thermal conductivity studies on cement-stabilised soil blocks. Proceedings of the Institution of Civil Engineers-Construction Materials, v. 170, n. 1, p. 40-54, 2017. DOI: https://doi.org/10.1680/jcoma.15.00032.

BENHAOUA, W.; GRINE, K.; KENAI, S. Performance of stabilized earth with wheat straw and slag. MRS Advances, v. 5, n. 25, p. 1285-1294, 2020. DOI: https://doi.org/10.1557/adv.2020.174.

BRUNO, A. W. et al. Thermal performance of fired and unfired earth bricks walls. Journal of Building Engineering, v. 28, p. 101017, 2020. DOI: https://doi.org/10.1016/j.jobe.2019.101017

CAGNON, H. et al. Hygrothermal properties of earth bricks. Energy and Buildings, v. 80, p. 208-217, 2014. DOI: https://doi.org/10.1016/j.enbuild.2014.05.024.

CHEIKHI, W. et al. Study of indoor performances of a building using Rammed earth. In: MATEC Web of Conferences. EDP Sciences, 2018. p. 2089.

EL FGAIER, F. et al. Dynamic thermal performance of three types of unfired earth bricks. Applied Thermal Engineering, v. 93, p. 377-383, 2016. DOI: https://doi.org/10.1016/j.applthermaleng.2015.09.009

EL FGAIER, F. et al. Effect of sorption capacity on thermo-mechanical properties of unfired clay bricks. Journal of Building Engineering, v. 6, p. 86-92, 2016. DOI: https://doi.org/10.1016/j.jobe.2016.02.011.

Ferreira, R. C. Mini-painéis, termofísicas de tijolos e. Desempenho físico-mecânico e propriedades termofísicas de tijolos e mini-painéis de terra crua tratada com aditivos químicos. 2003. 229 f. Tese (Doutorado em Engenharia Agrícola) . Universidade estadual de Campinas, 2003.

GIESEKAM, J.; BARRETT, J. R.; TAYLOR, P. Construction sector views on low carbon building materials. Building Research & Information, v. 44, n. 4, p. 423-444, 2016. DOI: https://doi.org/10.1080/09613218.2016.1086872.

GIUFFRIDA, G; et al. An overview on contemporary rammed earth buildings: technological advances in production, construction and material characterization. IOP Conference Series: Earth and Environmental Science, vol. 296, 2019. DOI: https://doi.org/10.1088/1755-1315/296/1/012018.

HALL, M.; ALLINSON, D. Assessing the effects of soil grading on the moisture content-dependent thermal conductivity of stabilised rammed earth materials. Applied Thermal Engineering, v. 29, n. 4, p. 740-747, 2009. DOI: https://doi.org/10.1016/j.applthermaleng.2008.03.051.

JUAN, X. et al. The comparative study on the climate adaptability based on indoor physical environment of traditional dwelling in Qinba mountainous areas, China. Energy and Buildings, v. 197, p. 140-155, 2019. DOI: https://doi.org/10.1016/j.enbuild.2019.05.045.

KHEDARI, J.; WATSANASATHAPORN, P.; HIRUNLABH, J. Development of fibre-based soil–cement block with low thermal conductivity. Cement and concrete composites, v. 27, n. 1, p. 111-116, 2005. DOI: https://doi.org/10.1016/j.cemconcomp.2004.02.042.

KONGKAJUN, N. et al. Soil-cement bricks produced from local clay brick waste and soft sludge from fiber cement production. Case Studies in Construction Materials, v. 13, p. e00448, 2020. DOI: https://doi.org/10.1016/j.cscm.2020.e00448

LABOREL-PRÉNERON, A.; MAGNIONT, C.; AUBERT, J. Hygrothermal properties of unfired earth bricks: Effect of barley straw, hemp shiv and corn cob addition. Energy and Buildings, v. 178, p. 265-278, 2018. DOI: https://doi.org/10.1016/j.enbuild.2018.08.021.

LAMBERTS, R; DUTRA, L; PEREIRA, F. O. Eficiência energética na arquitetura. 3 ed. São Paulo: PW, 2013.

LIUZZI, S. et al. Hygrothermal behaviour and relative humidity buffering of unfired and hydrated lime-stabilised clay composites in a Mediterranean climate. Building and Environment, v. 61, p. 82-92, 2013. DOI: https://doi.org/10.1016/j.buildenv.2012.12.006.

MAILLARD, P.; AUBERT, J-E. Effects of the anisotropy of extruded earth bricks on their hygrothermal properties. Construction and Building Materials, v. 63, p. 56-61, 2014. DOI: https://doi.org/10.1016/j.enbuild.2018.08.021.

MANIATIDIS, V.; WALKER, P. A review of rammed earth construction for DTi partners in innovation project. Natural building technology group, University of Bath, 2003.

MERCKX, B. et al. Simplified transient hot-wire method for effective thermal conductivity measurement in geo materials: microstructure and saturation effect. Advances in Civil Engineering, v. 2012, 2012. DOI: https://doi.org/10.1155/2012/625395

MEUKAM, P. et al. Thermo physical characteristics of economical building materials. Construction and Building Materials, v. 18, n. 6, p. 437-443, 2004. DOI: https://doi.org/10.1016/j.conbuildmat.2004.03.010

MILOHIN, G. S G. et al. Mechanical and thermal characterization of compact blocks made of clayey earth with wood ashes addition. In: MATEC Web of Conferences. EDP Sciences, 2020. p. 1030.

MOHAMED B. et al. Characterization of a stabilized earth concrete and the effect of incorporation of aggregates of cork on its thermo-mechanical properties: Experimental study and modeling. Construction and Building Materials, v. 74, p. 259-267, 2015. DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.106

NAMBOONRUANG, W. et al. Properties of Crumb Rubber Mixed in Local Thailand Soil Cement Brick Composites. In: Advanced Materials Research. Trans Tech Publications Ltd, 2013. p. 1271-1276.

NARAYANASWAMY, A. H. et al. Mechanical and thermal properties, and comparative life-cycle impacts, of stabilised earth building products. Construction and Building Materials, v. 243, p. 118096, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118096.

NEVES, C.; FARIA, O. B. Técnicas de construção com terra. Bauru, SP: FEB-UNESP/PROTERRA. Disponível em: http://www.redproterra.org. Acesso em: 15 junho 2021.

PINTO, E. S. Solo-cimento compactado: proposta de métodos de ensaio para dosagem e caracterização física e mecânica. 2016. 207 f. Dissertação (Mestrado em Arquitetura e Urbanismo) - Faculdade de Arquitetura, Artes e Comunicação, Universidade Estadual Paulista Júlio de Mesquita Filho, Bauru, 2016.

R-PROJECT. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Disponível em: <http://www.Rproject.org/>. Acesso em novembro 2021.

SAIDI, M. et al. Stabilization effects on the thermal conductivity and sorption behavior of earth bricks. Construction and Building Materials, v. 167, p. 566-577, 2018. DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.063.

SANTOS, W. N. dos et al. Método de fio quente na determinação das propriedades térmicas de polímeros. Polímeros, v. 14, p. 354-359, 2004. DOI: https://doi.org/10.1590/S0104-14282004000500014

SILVA, W. M.; FERREIRA, R. C. Incorporação de resíduos agroindustriais e seus efeitos sobre as características mecânicas e termofísicas de tijolos modulares de solo-cimento. In: CONGRESSO DE PESQUISA, ENSINO E EXTENSÃO DA UFG - CONPEEX, 2, 2005, Goiânia. Anais eletrônicos do XIII Seminário de Iniciação Cientifica [CD-ROM], Goiânia: UFG, 2005. 3p.

SINDANNE, S. A. et al. Thermophysical characterization of earth blocks stabilized by cement, sawdust and lime. Journal of Building Materials and Structures, v. 1, n. 2, p. 58-64, 2014. DOI: https://doi.org/10.34118/jbms.

SORE, S. O. et al. Stabilization of compressed earth blocks (CEBs) by geopolymer binder based on local materials from Burkina Faso. Construction and Building Materials, v. 165, p. 333-345, 2018. DOI: https://doi.org/10.1016/j.conbuildmat.2018.01.0517.

TAALLAH, B.; GUETTALA, A. The mechanical and physical properties of compressed earth block stabilized with lime and filled with untreated and alkali-treated date palm fibers. Construction and Building Materials, v. 104, p. 52-62, 2016. DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.007.

TEIXEIRA, E. R. et al. Mechanical and thermal performance characterisation of compressed earth blocks. Energies, v. 13, n. 11, p. 2978, 2020. DOI: https://doi.org/10.3390/en13112978.

TOUFIGH, V.; KIANFAR, E. The effects of stabilizers on the thermal and the mechanical properties of rammed earth at various humidities and their environmental impacts. Construction and Building Materials, v. 200, p. 616-629, 2019. DOI: https://doi.org/10.1016/j.conbuildmat.2018.12.050.

TOURÉ, P. M. et al. Mechanical and hygrothermal properties of compressed stabilized earth bricks (CSEB). Journal of Building Engineering, v. 13, p. 266-271, 2017. DOI: https://doi.org/10.1016/j.jobe.2017.08.012.

WATI, E. et al. Energy performance of earthen building walls in the equatorial and tropical climates: a case study of Cameroon. Energy Efficiency, v. 13, n. 4, p. 735-750, 2020. DOI: https://doi.org/10.1007/s12053-020-09856-6.

YUKSEL, N. The Review of Some Commonly Used Methods and Techniques to Measure the Thermal Conductivity of Insulation Materials. In: Insulation materials in context of sustainability. 1 ed. United Kingdom: IntechOpen, 2016. p. 114-140. DOI: http://dx.doi.org/10.5772/64157

ZAKHAM, N. et al. Influence of cement content on the thermal properties of compressed earth blocks (CEB) in the dry state. In MATEC Web of Conferences, vol. 149, 2018, p. 1059.DOI: https://doi.org/10.1051/matecconf/201814901059.

ZHANG, L. et al. Hygrothermal properties of compressed earthen bricks. Construction and Building Materials, v. 162, p. 576-583, 2018. DOI: https://doi.org/10.1016/j.conbuildmat.2017.11.163.

ZHANG, L. et al. Thermal conductivity of cement stabilized earth blocks. Construction and Building Materials, v. 151, p. 504-511, 2017. DOI: https://doi.org/10.1016/j.conbuildmat.2017.06.047

Published

2022-11-07

How to Cite

TARTAROTTI CARDOZO DA SILVA, Mayara; DA SILVA MILANI, Ana Paula. Thermal conductivity of the soil-cement building material: a bibliometric study. In: NATIONAL MEETING OF BUILT ENVIRONMENT TECHNOLOGY, 19., 2022. Anais [...]. Porto Alegre: ANTAC, 2022. p. 1–16. DOI: 10.46421/entac.v19i1.2069. Disponível em: https://eventos.antac.org.br/index.php/entac/article/view/2069. Acesso em: 25 nov. 2024.

Issue

Section

(Inativa) Conforto Ambiental e Eficiência Energética

Similar Articles

<< < 60 61 62 63 64 65 66 67 68 69 > >> 

You may also start an advanced similarity search for this article.