Soil Temperature Characterization in Central Brazil: Exploring the Potential for Implementing Geothermal Systems
DOI:
https://doi.org/10.46421/entac.v20i1.5822Keywords:
Geothermal Energy, Climate Change, Soil Temperature, Sustainable Implementation, Agricultural CoolingAbstract
This study investigates the potential implementation of geothermal systems in Central Brazil, focusing on historical and future soil temperature conditions. The soil's distinct thermophysical properties result in a slower response to climatic variations, creating a temperature gradient known as soil thermal inertia. The research analyzes soil temperature correlations with altitude and climate change in selected Mato Grosso municipalities for historical, 2050, and 2080 periods. The findings reveal a robust correlation between altitude and historical soil temperature, indicating varied geothermal potential. However, 2050 and 2080 projections show significant potential reduction due to climate change impacts, especially in lower-altitude regions. The positive correlation between soil and air temperatures highlights their close relationship, crucial for assessing geothermal potential under climate change. The results emphasize the importance of considering climate projections in geothermal planning and suggest geothermal energy as a sustainable cooling solution for Mato Grosso's agricultural buildings, adapting to evolving thermal conditions.
References
RÍOS-ARRIOLA, J.; GÓMEZ-ARIAS, E.; ZAVALA-GUILLÉN, I.; VELÁZQUEZ-LIMÓN, N.; BOJÓRQUEZ-MORALES, G.; LÓPEZ-VELÁZQUEZ, JE. (2023). Numerical modeling of soil temperature variation under an extreme desert climate. Geothermics, v. 112. https://doi.org/10.1016/j.geothermics.2023.102731
STANIEC, M.; NOWAK, H. (2016). The application of energy balance at the bare soil surface to predict annual soil temperature distribution. Energy and Buildings, v. 127. https://doi.org/10.1016/j.enbuild.2016.05.047
POIEL, C. O.; WOJTKOWIAK, J.; BIERNACKA, B. (2001). Measurements of temperature distribution in ground. Experimental Thermal and Fluid Science, v. 25. https://doi.org/10.1016/S0894-1777(01)00078-4
LUND, J. W.; TOTH, A. N. (2021). Direct utilization of geothermal energy 2020 worldwide review. Geothermics, v. 90. https://doi.org/10.1016/j.geothermics.2020.101915
PEEL, M. C.; FINLAYSON, B. L.; McMAHON, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, v. 11. https://doi.org/10.5194/hess-11-1633-2007
BELCHER, S. E.; HACKER, J. N.; POWELL, D. S. (2005). Constructing design weather data for future climates. Building Services Engineering Research & Technology, v. 26. https://doi.org/10.1191/0143624405bt112oa
IPCC – Intergovernmental Panel on Climate Change. (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Available at: https://www.ipcc.ch/report/ar6/wg2/. Accessed on: April 24, 2023.
RODRIGUES, E.; FERNANDES, M. S.; CARVALHO, D. (2023). Future weather generator for building performance research: An open-source morphing tool and an application. Building and Environment, v. 233. https://doi.org