Portland Cements with High Addition of Granulated Blast Furnace Slag

Authors

  • Maysa Martins Cefet
  • Isabella Oliveira Pereira CEFET-MG
  • Augusto Cesar da Silva Bezerra CEFET-MG

DOI:

https://doi.org/10.46421/entac.v20i1.6291

Keywords:

Portland Cement, Granulated Blast Furnace Slag (GBFS),, Mechanical Performance, Functional Properties, Durability, Material Substitution

Abstract

The potential of diatomaceous earth as a usable residue from filtration processes is due to its high silicon content and favorable morphology for chemical reactions. Its refined granulometry and amorphous structure indicate high reactivity. Thus, we explored its application as a partial substitute for Portland cement, aiming to obtain a material with mechanical properties, good durability and lower environmental impacts associated with waste disposal and CO2 emissions. We perform compressive strength and water absorption tests on the molded specimens with the established trace, comparing their performance with that of pure Portland cement. The results obtained were used to evaluate the technical feasibility of this approach to the use of waste in the building materials industry.

Author Biographies

Isabella Oliveira Pereira, CEFET-MG

Engenheira de Produção Civil pelo CEFET/MG, atualmente trabalho como assistente de obras civis na Anglo Gold Ashant. Possuo experiências em fiscalização, planejamento e controle de obras, orçamentação e atividades administrativas.

Augusto Cesar da Silva Bezerra, CEFET-MG

Possui graduação em Engenharia de Produção Civil pelo Centro Federal de Educação Tecnológica de Minas Gerais (2004), mestrado em Construção Civil pela Universidade Federal de Minas Gerais (2007) e doutorado em Engenharia Metalúrgica e de Minas pela Universidade Federal de Minas Gerais (2012). Atualmente é professor efetivo do Centro Federal de Educação Tecnológica de Minas Gerais e coordenador de programas profissionais da área de conhecimento Engenharias I da CAPES. Tem experiência na área de Engenharia Civil, com ênfase em Materiais e Componentes de Construção, atuando principalmente nos seguintes temas: sustentabilidade, aproveitamento de resíduos, aglomerantes de baixo carbono, materiais álcalis-ativados, cimento Portland, compósitos cimentícios, concreto e infraestrutura resiliente.

References

I. De, S. Morais, V. Mineração, L. Magalhaes, E. Carballo, S. Corrêa, R.M. Rocha, O. Menezes, Sericitic Phyllite as Addition in Portland Cement Reuse of construction waste civil and mining View project Niobium additions in cast iron View project, Trans Tech Publ (2018). https://doi.org/10.4028/www.scientific.net/MSF.930.131.

P.K. Mehta, P.J.M. Monteiro, Concrete: Microstructure, Properties, and Materials, Fourth Edition, 4th ed., McGraw-Hill Education, New York, 2014.

ABNT, NBR 16697 - Cimento Portland - Requisitos, Assoc. Bras. NORMAS TÉCNICAS (2018).

B. Lothenbach, K. Scrivener, R.D. Hooton, Supplementary cementitious materials, Cem. Concr. Res. 41 (2011) 1244–1256. https://doi.org/10.1016/j.cemconres.2010.12.001.

Supriya, R. Chaudhury, U. Sharma, P.C. Thapliyal, L.P. Singh, Low-CO2 emission strategies to achieve net zero target in cement sector, J. Clean. Prod. 417 (2023) 137466. https://doi.org/10.1016/J.JCLEPRO.2023.137466.

ABNT, NBR 7215 - Cimento Portland - Determinação da resistência à compressão, Assoc. Bras. NORMAS TÉCNICAS (2019).

ABNT, NBR 9778 - Argamassa e concreto endurecidos - Determinação da absorção de água, índice de vazios e massa específica, Assoc. Bras. NORMAS TÉCNICAS (2005).

P.C.R.A. Abrão, F.A. Cardoso, V.M. John, Efficiency of Portland-pozzolana cements: Water demand, chemical reactivity and environmental impact, Constr. Build. Mater. 247 (2020) 118546. https://doi.org/10.1016/j.conbuildmat.2020.118546.

B. Walkley, R. San Nicolas, M.A. Sani, S.A. Bernal, J.S.J. van Deventer, J.L. Provis, Structural evolution of synthetic alkali-activated CaO-MgO-Na2O-Al2O3-SiO2 materials is influenced by Mg content, Cem. Concr. Res. 99 (2017) 155–171. https://doi.org/10.1016/j.cemconres.2017.05.006.

S. Luo, M. Liu, L. Yang, J. Chang, W. Yang, X. Yan, H. Yu, Y. Shen, Utilization of waste from alumina industry to produce sustainable cement-based materials, Constr. Build. Mater. 229 (2019) 116795. https://doi.org/10.1016/j.conbuildmat.2019.116795.

A.M.T. Simonsen, S. Solismaa, H.K. Hansen, P.E. Jensen, Evaluation of mine tailings’ potential as supplementary cementitious materials based on chemical, mineralogical and physical characteristics, Waste Manag. 102 (2020) 710–721. https://doi.org/10.1016/j.wasman.2019.11.037.

D. Li, R. Sun, D. Wang, C. Ren, K. Fang, Study on the pozzolanic activity of ultrafine circulating fluidized-bed fly ash prepared by jet mill, Fuel 291 (2021) 120220. https://doi.org/10.1016/j.fuel.2021.120220.

M. Keppert, E. Vejmelková, P. Bezdička, M. Doleželová, M. Čáchová, L. Scheinherrová, J. Pokorný, M. Vyšvařil, P. Rovnaníková, R. Černý, Red-clay ceramic powders as geopolymer precursors: Consideration of amorphous portion and CaO content, Appl. Clay Sci. 161 (2018) 82–89. https://doi.org/10.1016/J.CLAY.2018.04.019.

T. Gonçalves, R. V. Silva, J. de Brito, J.M. Fernández, A.R. Esquinas, Mechanical and durability performance of mortars with fine recycled concrete aggregates and reactive magnesium oxide as partial cement replacement, Cem. Concr. Compos. 105 (2020) 103420. https://doi.org/10.1016/j.cemconcomp.2019.103420.

N.J. John, I. Khan, A. Patel, Evaluation of the crushing characteristics of industrial waste aggregates as construction materials, Constr. Build. Mater. 403 (2023) 133111. https://doi.org/10.1016/J.CONBUILDMAT.2023.133111.

P.C. Aïtcin, Supplementary cementitious materials and blended cements, Sci. Technol. Concr. Admixtures (2016) 53–73. https://doi.org/10.1016/B978-0-08-100693-1.00004-7.

J. Halbiniak, J. Katzer, M. Major, I. Major, A proposition of an in situ production of a blended cement, Materials (Basel). 13 (2020). https://doi.org/10.3390/ma13102289.

L.W.O. Soares, R.M. Braga, J.C.O. Freitas, R.A. Ventura, D.S.S. Pereira, D.M.A. Melo, The effect of rice husk ash as pozzolan in addition to cement Portland class G for oil well cementing, J. Pet. Sci. Eng. 131 (2015) 80–85. https://doi.org/10.1016/j.petrol.2015.04.009.

A. de Magalhães, Caracterização e análise macro e microestrutural de concretos fabricados com cimentos contendo escórias de alto-forno, (2007). https://repositorio.ufmg.br/handle/1843/PASA-7LDGM4 (accessed May 26, 2024).

A.M. Neville, Properties of concrete, Pearson, 2011.

Published

2024-10-07

How to Cite

MARTINS, Maysa; OLIVEIRA PEREIRA, Isabella; CESAR DA SILVA BEZERRA, Augusto. Portland Cements with High Addition of Granulated Blast Furnace Slag. In: NATIONAL MEETING OF BUILT ENVIRONMENT TECHNOLOGY, 20., 2024. Anais [...]. Porto Alegre: ANTAC, 2024. DOI: 10.46421/entac.v20i1.6291. Disponível em: https://eventos.antac.org.br/index.php/entac/article/view/6291. Acesso em: 24 nov. 2024.

Most read articles by the same author(s)

Similar Articles

<< < 10 11 12 13 14 15 16 17 18 19 > >> 

You may also start an advanced similarity search for this article.