RESÍDUO DE MINÉRIO DE MANGANÊS DA REGIÃO AMAZÔNICA E O SEU POTENCIAL USO COMO MATERIAL SUPLEMENTAR AO CIMENTO PORTLAND
DOI:
https://doi.org/10.46421/entac.v18i.691Keywords:
Mine tailings, Alternative raw materials, Alternative cementAbstract
Manganese is among the twenty most abundant elements in the earth's crust, it is considered essential in the manufacture of iron and steel, deoxidizers and in the manufacture of metal alloys. However, during the production of manganese, a large portion of waste is generated and deposited in dams. Here, this residue was evaluated as a filler material in Portland cement. The results showed that replacing cement with the residue increases the compressive strength and reduces the voids and water absorption of the samples. These findings have important implications for the substantial application of the residue as a supplementary material to cement.
References
ABNT ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7215: Cimento Portland - Determinação da resistência à compressão de corpos de prova cilíndricos. Rio de Janeiro, 2002.
_______. NBR 9778: Argamassa e concreto endurecidos - Determinação da absorção de água, índice de vazios e massa específica. Rio de Janeiro, 2005.
_______. NBR 11578: Cimento Portland Composto. Rio de Janeiro, 199.
AFONSO, J. C. Manganês no brasil: descoberta, extração, consumo e comercialização numa perspectiva histórica. Química Nova, vol. 42, no. 10, p. 1172–1183, 2019.
ANM Agência Nacional De Mineração. Classificação das barragens de mineração brasileiras - data base fevereiro de 2019. Brasília, 2019.
BERODIER, E.; SCRIVENER, K. Understanding the filler effect on the nucleation and growth of C-S-H. Journal of the American Ceramic Society, vol. 97, no. 12, p. 3764–3773, 2014.
BISN, D. L.; POSR, J. E. Thermal behavior of complex, tunnel-structure manganese oxides. American Mineralogist, vol. 74, no. 1, p. 177–186, 1989.
CYR, M.; LAWRENCE, P.; RINGOT, E. Efficiency of mineral admixtures in mortars: Quantification of the physical and chemical effects of fine admixtures in relation with compressive strength. Cement and Concrete Research, vol. 36, p. 264–277, 2006.
DARMANE, Y.; CHERKAOUI, M.; KITANE, S.; ALAOUI, A.; SEBBAN, A.; EBN TOUHAMI, M. Preparation of chemical manganese dioxide from Moroccan pyrolusite mine waste. Hydrometallurgy, vol. 92, p. 73–78, 2008.
DRUMMOND, J. A. Investimentos privados, impactos ambientais e qualidade de vida num empreendimento mineral amazônico o caso da mina de manganês de Serra do Navio (Amapá). História, Ciências, Saúde Manguinhos, vol. 6, p. 753-792, 2000.
ENVIRONMENT, U. N.; SCRIVENER, K. L.; JOHN, V. M.; GARTNER, E. M. Cement and Concrete Research Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, vol. 114, p. 2–26, 2018.
FERREIRA FILHO, O. B. Anuário Mineral Brasileiro: Principais Substâncias Metálicas. 1st ed. Brasília: Agência Nacional de Mineração, 2019.
HAGELSTEIN, K. Globally sustainable manganese metal production and use. Journal of Environmental Management, vol. 90, no. 12, p. 3736–3740, 2009.
LI, C.; ZHONG, H.; WANG, S.; XUE, J.; ZHANG, Z. A novel conversion process for waste residue: synthesis of zeolite from electrolytic manganese residue and its application to the removal of heavy metals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 470, p. 258–267, 2015.
MENÉNDEZ, G.; BONAVETTI, V.; IRASSAR, E. F. Strength development of ternary blended cement with limestone filler and blast-furnace slag. Cement and Concrete Composites, vol. 25, p. 61–67, 2003.
MENDES, K. C.; FIGUEIRA, B. A. M.; LAVRA, T. C. C.; FERNANDEZ, O. J. C.; CALLEJAS, P.; MERCURY, J. M. R. Hydrothermal synthesis of o-LiMnO2 employing Mn mining residues from Amazon (Brazil) as starting material. Materials Letters: X, vol. 2, p. 100012, 2019.
MME MINISTÉRIO DE MINAS E ENERGIA. Perfil da mineração de manganês., 2009.
REICHL, C.; SCHATZ, M.; MOSAPUST, A. World Mining Data 2020: Iron and Ferro-Alloy Metals, Non-Ferrous Metals, Precious Metals, Indrustrial Minerals, Mineral Fuels. 35th ed. Vienna: Federal Ministry of Agriculture, 2020.
SHEN, Y. F.; ZERGER, R. P.; DEGUZMAN, R. N.; SUIB, S. L.; MCCURDY, L.; POTTER, D. I.; O’YOUNG, C. L. Manganese Oxide Octahedral Molecular Sieves: Preparation, Characterization, and Applications. Science, vol. 260, no. April, p. 511–516, 1993.
UNITED NATIONS. Population Division, World Urbanization Prospects: The 2014 Revision. Department of Economic and Social Affairs, 2014.
YANG, C.; LV, X.; TIAN, X.; WANG, Y.; KOMARNENI, S. An investigation on the use of electrolytic manganese residue as filler in sulfur concrete. Construction and Building Materials, vol. 73, p. 305–310, 2014.
ZHOU, C.; DU, B.; WANG, N.; CHEN, Z. Preparation and strength property of autoclaved bricks from electrolytic manganese residue. Journal of Cleaner Production, vol. 84, p. 707–714, 2014.
ZUNINO, F.; BOEHM-COURJAULT, E.; SCRIVENER, K. The impact of calcite impurities in clays containing kaolinite on their reactivity in cement after calcination. Materials and Structures, vol. 9, 2020