Influência da verticalização no microclima urbano em cidades tropicais: uma revisão da literatura
DOI:
https://doi.org/10.46421/singeurb.v3i00.1134Palavras-chave:
Clima urbano, Adensamento urbano, Ventilação natural, Sombreamento, Conforto térmico externoResumo
O adensamento urbano oriundo do processo de verticalização provoca alterações no comportamento térmico que, a depender da localidade, podem beneficiar ou prejudicar a qualidade microclimática urbana local. Este artigo parte de uma pesquisa de Iniciação Científica e objetivou realizar revisão narrativa da literatura recente acerca da influência da verticalização no microclima urbano em cidades tropicais. A revisão foi realizada a partir da busca nas plataformas Scopus e Web of Science, da qual foram selecionados e analisados 37 artigos em língua inglesa. Os artigos analisados mostraram que o Fator de Céu Visível (FCV) e a relação H/W dos cânions urbanos estão fortemente relacionados à formação das Ilhas de Calor e ao conforto térmico no ambiente urbano. Em cidades tropicais, onde o ganho térmico deve ser evitado, a verticalização traz benefícios quanto ao aumento da velocidade do ar no nível do pedestre e o aumento das áreas sombreadas, podendo, ainda, ser aliada ao incremento de vegetação, áreas permeáveis e corpos d’água auxiliando na regulação do microclima em cidades tropicais. Espera-se que a compilação obtida nesta revisão possa fomentar novas pesquisas e discussões sobre a temática de modo a subsidiar políticas públicas, com vistas à melhoria dos aspectos bioclimáticos no ambiente urbano.
Referências
ACERO, J. A.; KOH, E. J.Y., RUEFENACHT, L. A.; NORFORD, L. K. Modelling the influence of high-rise urban geometry on outdoor thermal comfort in Singapore. Urban Climate, [s. l.], v. 36, n. January, p. 100775, 2021. Disponível em: https://doi.org/10.1016/j.uclim.2021.100775.
AHMED, A. Q.; OSSEN, D. R.; JAMEI, E.; MANAF, N. A.; SAID, I. AHMAD, M. H. Urban surface temperature behaviour and heat island effect in a tropical planned city. Theoretical and Applied Climatology, [s. l.], v. 119, n. 3–4, p. 493–514, 2014. Disponível em: https://doi.org/10.1007/s00704-014-1122-2.
CHEN, L.; NG, E.; AN, X.; REN, C.; LEE, M.; WANG, U.; HE, Z. Sky view factor analysis of street canyons and its implications for daytime intra-urban air temperature differentials in high-rise, high-density urban areas of Hong Kong: A GIS-based simulation approach. International Journal of Climatology, [s. l.], v. 32, n. 1, p. 121–136, 2012. Disponível em: https://doi.org/10.1002/joc.2243.
CHEN, S.; ZHANG, W.; WONG, N. H.; IGNATIUS, M. Combining CityGML files and data-driven models for microclimate simulations in a tropical city. Building and Environment, [s. l.], v. 185, n. May, p. 107314, 2020. Disponível em: https://doi.org/10.1016/j.buildenv.2020.107314.
DENG, J. Y.; WONG, N. H.; ZHENG, Xi. Effects of street geometries on building cooling demand in Nanjing, China. Renewable and Sustainable Energy Reviews, [s. l.], v. 142, n. April 2020, p. 110862, 2021. Disponível em: https://doi.org/10.1016/j.rser.2021.110862.
DISSEGNA, M. A.; YIN, T.; WEI, S.; RICHARDS, D.; GRÊT-REGAMEY, A. 3-D reconstruction of an urban landscape to assess the influence of vegetation in the radiative budget. Forests, [s. l.], v. 10, n. 8, p. 1–19, 2019. Disponível em: https://doi.org/10.3390/f10080700.
EMMANUEL, R.; FERNANDO, H. J.S. Urban heat islands in humid and arid climates: Role of urban form and thermal properties in Colombo, Sri Lanka and Phoenix, USA. Climate Research, [s. l.], v. 34, n. 3, p. 241–251, 2007. Disponível em: https://doi.org/10.3354/cr00694.
EMMANUEL, R.; JOHANSSON, E. Influence of urban morphology and sea breeze on hot humid microclimate: The case of Colombo, Sri Lanka. Climate Research, [s. l.], v. 30, n. 3, p. 189–200, 2006. Disponível em: https://doi.org/10.3354/cr030189.
GHAFFARIANHOSEINI, A.; BERARDI, U.; GHAFFARIANHOSEINI, A.; AL-OBAIDI, K. Analyzing the thermal comfort conditions of outdoor spaces in a university campus in Kuala Lumpur, Malaysia. Science of the Total Environment, [s. l.], v. 666, p. 1327–1345, 2019. Disponível em: https://doi.org/10.1016/j.scitotenv.2019.01.284.
GIVONI, B. Comfort, climate analysis and building design guidelines, Energy Build. 18. 1992, p. 11–23, https://doi.org/10.1016/0378-7788(92)90047-K.
GOH, K. C.; CHANG, C. H. The relationship between height to width ratios and the heat island intensity at 22:00 h for Singapore. International Journal of Climatology, [s. l.], v. 19, n. 9, p. 1011–1023, 1999. Disponível em: https://doi.org/10.1002/(SICI)1097-0088(199907)19:9<1011::AID-JOC411>3.0.CO;2-U.
HIEN, W. N.; JUSUF, S. K. Air Temperature Distribution and the Influence of Sky View Factor in a Green Singapore Estate. Journal of Urban Planning and Development, [s. l.], v. 136, n. 3, p. 261–272, 2010. Disponível em: https://doi.org/10.1061/(asce)up.1943-5444.0000014.
HORRISON, E.; AMIRTHAM, L. R. Role of built environment on factors affecting outdoor thermal comfort - A case of T. Nagar, Chennai, India. Indian Journal of Science and Technology, [s. l.], v. 9, n. 5, p. 3–6, 2016. Disponível em: https://doi.org/10.17485/ijst/2016/v9i5/87253. IBGE, Instituto Brasileiro de Geografia e Estatística. Censo demográfico, 2010. Disponível em: <https://cidades.ibge.gov.br>. Acesso em: jul. 2021. IBRAHIM, A. A., NDUKA, I. C., IGUISI, E. O., & ATI, O. F. An assessement of the impact of sky view factor (SVF) on the micro-climate of Urban Kano. Australian Journal of Basic and Applied Sciences, 5(7), 81–85. 2011.
JAMEI, E.; OSSEN, D. R.; SEYEDMAHMOUDIAN, M.; SANDANAYAKE, M.; STOJCEVSKI, A; HORAN, B. Urban design parameters for heat mitigation in tropics. Renewable and Sustainable Energy Reviews, [s. l.], v. 134, n. August 2019, p. 110362, 2020. Disponível em: https://doi.org/10.1016/j.rser.2020.110362.
JOHANSSON, E.; EMMANUEL, R. The influence of urban design on outdoor thermal comfort in the hot, humid city of Colombo, Sri Lanka. International Journal of Biometeorology, [s. l.], v. 51, n. 2, p. 119–133, 2006. Disponível em: https://doi.org/10.1007/s00484-006-0047-6.
KAKON, A. N.; MISHIMA, N.; KOJIMA, S. Simulation of the urban thermal comfort in a high-density tropical city: Analysis of the proposed urban construction rules for Dhaka, Bangladesh. Building Simulation, [s. l.], v. 2, n. 4, p. 291–305, 2009. Disponível em: https://doi.org/10.1007/s12273-009-9321-y.
KRÜGER, E.; DRACH, P.; BROEDE, P. Outdoor comfort study in Rio de Janeiro: site-related context effects on reported thermal sensation. International Journal of Biometeorology, [s. l.], v. 61, n. 3, p. 463–475, 2017. Disponível em: https://doi.org/10.1007/s00484-016-1226-8.
LAU, K. K. L.; CHUNG, S. C.; REN, C. Outdoor thermal comfort in different urban settings of sub-tropical high-density cities: An approach of adopting local climate zone (LCZ) classification. Building and Environment, [s. l.], v. 154, n. November 2018, p. 227–238, 2019. Disponível em: https://doi.org/10.1016/j.buildenv.2019.03.005.
LAU, K. K. L.; REN, C.; HO, J.; NG, E. Numerical modelling of mean radiant temperature in high-density sub-tropical urban environment. Energy and Buildings, [s. l.], v. 114, p. 80–86, 2016. Disponível em: https://doi.org/10.1016/j.enbuild.2015.06.035.
LEE, R. X.; WONG, N. H.; TAN, A. Y. K.; JUSUF, S. K. The study of variation in Gross Building Coverage Ratio on estate-level outdoor ventilation. ICSDC 2011: Integrating Sustainability Practices in the Construction Industry - Proceedings of the International Conference on Sustainable Design and Construction 2011, 255–264. 2012. https://doi.org/10.1061/41204(426)33.
MANATSA, D.; CHINGOMBE, W.; MATARIRA, C. H. TEMPORAL DYNAMICS OF THE URBAN HEAT ISLAND OF SINGAPORE. International Journal of Climatology, [s. l.], v. 2029, n. March 2008, p. 2011–2029, 2008. Disponível em: https://doi.org/10.1002/joc.
MANTEGHI, G.; SHUKRI, S. M.; LAMIT, H. Street geometry and river width as design factors to improve thermal comfort in Melaka City. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, [s. l.], v. 58, n. 1, p. 15–22, 2019.
MARTINS, T.; ADOLPHE, L.; BASTOS, L. E. G.; MARTINS, M. A. L. Sensitivity analysis of urban morphology factors regarding solar energy potential of buildings in a Brazilian tropical context. Solar Energy, [s. l.], v. 137, p. 11–24, 2016. Disponível em: https://doi.org/10.1016/j.solener.2016.07.053.
MD DIN, M. F.; LEE, Y. Y.; PONRAJ, M.; OSSEN, D. R.; IWAO, K.; CHELLIAPAN, S. Thermal comfort of various building layouts with a proposed discomfort index range for tropical climate. Journal of Thermal Biology, [s. l.], v. 41, n. 1, p. 6–15, 2014. Disponível em: https://doi.org/10.1016/j.jtherbio.2014.01.004.
MELO, E. F. R. Q.; MATANA JÚNIOR, S. Análise da verticalização urbana no eixo estruturador de Passo Fundo – RS. Urbe. Revista Brasileira de Gestão Urbana, 12, e20190369, 2020. https://doi.org/10.1590/2175- 3369.012.e20190369.
MUNIZ-GÄAL, L. P.; PEZZUTO, C. C.; CARVALHO, M. F. H.; MOTA, L. T. M. Urban geometry and the microclimate of street canyons in tropical climate. Building and Environment, [s. l.], v. 169, p. 106547, 2020. Disponível em: https://doi.org/10.1016/j.buildenv.2019.106547.
NAZARIAN, N.; DUMAS, N.; KLEISSL, J.; NORFORD, L. Effectiveness of cool walls on cooling load and urban temperature in a tropical climate. Energy and Buildings, [s. l.], v. 187, n. April 2002, p. 144–162, 2019. Disponível em: https://doi.org/10.1016/j.enbuild.2019.01.022.
OKE, T. R. Street design and urban canopy layer climate, Energy Build. 11. 1988, p. 103–113, https://doi.org/10.1016/0378-7788(88)90026-6.
PACIFICI, M.; RAMA, F.; DE CASTRO MARINS, K. R. Analysis of temperature variability within outdoor urban spaces at multiple scales. Urban Climate, [s. l.], v. 27, n. June 2018, p. 90–104, 2019. Disponível em: https://doi.org/10.1016/j.uclim.2018.11.003.
PEREIRA, C. T.; MASIERO, E.; BOURSCHEIDT, V. Socio-spatial inequality and its relationship to thermal (dis)comfort in two major Local Climate Zones in a tropical coastal city. International Journal of Biometeorology, [s. l.], n. Santos 1993, 2021. Disponível em: https://doi.org/10.1007/s00484-021-02099-9.
RAJAGOPALAN, P.; LIM, K. C.; JAMEI, E. Urban heat island and wind flow characteristics of a tropical city. Solar Energy, [s. l.], v. 107, p. 159–170, 2014. Disponível em: https://doi.org/10.1016/j.solener.2014.05.042. SANTOS, J. S. A.; SAUER, A. S. A influência da verticalização na sensação térmica urbana: estudo de caso em Vila Velha/ES. Mix Sustentável: Florianópolis, v.6, n.4, p.29-42. 2020. https://doi.org/10.29183/2447-3073.MIX2020.v6.n4.29-42. SHAFAGHAT, A.; KEYVANFAR, A.; MANTEGHI, G.; LAMIT, H. B. Street geometry factors influence urban microclimate in tropical coastal cities: A review. Environmental and Climate Technologies, [s. l.], v. 17, n. 1, p. 61–75, 2016. Disponível em: https://doi.org/10.1515/rtuect-2016-0006.
SHARMIN, T.; STEEMERS, K.; MATZARAKIS, A. Analysis of microclimatic diversity and outdoor thermal comfort perceptions in the tropical megacity Dhaka, Bangladesh. Building and Environment, [s. l.], v. 94, p. 734–750, 2015. Disponível em: https://doi.org/10.1016/j.buildenv.2015.10.007.
SHARMIN, T.; STEEMERS, K.; MATZARAKIS, A. Microclimatic modelling in assessing the impact of urban geometry on urban thermal environment. Sustainable Cities and Society, [s. l.], v. 34, n. July, p. 293–308, 2017. Disponível em: https://doi.org/10.1016/j.scs.2017.07.006. SILVA, I.; SANTOS, R.; LOPES, A.; ARAÚJO, V. Morphological indices as urban planning tools in northeastern Brazil. Sustainability, 10(12), 2018. http://dx.doi.org/10.3390/su10124358. SOUZA, L. C. L.; PEDROTTI, F. S.; LEME, F. T. Urban geometry and electrical energy consumption in a tropical city. 5th Symposium on the Urban Environment, 215–222. 2004.
STEEMERS, K.; LEUNG, K. S. Urban Geometry, Indoor Thermal Comfort and Cooling Load: An Empirical Study on High-Density Tropical Housing. Sustainable Architecture and Urban Development, [s. l.], p. 63–78, 2010.
TAN, Z.; LAU, K. K. L.; NG, E. Planning strategies for roadside tree planting and outdoor comfort enhancement in subtropical high-density urban areas. Building and Environment, [s. l.], v. 120, p. 93–109, 2017. Disponível em: https://doi.org/10.1016/j.buildenv.2017.05.017.
YAN, H.; FAN, S.; GUO, C.; WU, F.; ZHANG, N.; DONG, L. Assessing the effects of landscape design parameters on intra-urban air temperature variability: The case of Beijing, China. Building and Environment, [s. l.], v. 76, p. 44–53, 2014. Disponível em: https://doi.org/10.1016/j.buildenv.2014.03.007.
YANG, F.; QIAN, F.; LAU, S. S.Y. Urban form and density as indicators for summertime outdoor ventilation potential: A case study on high-rise housing in Shanghai. Building and Environment, [s. l.], v. 70, p. 122–137, 2013. Disponível em: https://doi.org/10.1016/j.buildenv.2013.08.019.
ZLOTNIK, H. World urbanization: trends and prospects. In: New forms of urbanization. Routledge; 2017. p. 43–64.