The impact of air renewal on indoor air quality and thermal conditioning in classrooms

Authors

DOI:

https://doi.org/10.46421/encac.v17i1.4629

Keywords:

IAQ, Computational simulation, Energy simulation, Covid-19, Brazilian schools

Abstract

This research aims to evaluate the impact the insertion of a constant ventilation rate can have on Indoor Air Quality (IAQ) and energy consumption for thermal conditioning. The experimental method evaluates a Brazilian standard classroom of schools of the National Fund for the Development of Education - FNDE through computer simulation in the city of Florianópolis-SC. The EnergyPlus program inserted in the grasshopper through the Honeybee plugin was adopted and the ideal loads for thermal conditioning and a percentage of hours in IAQ are established as evaluation criteria. This criterion has been subdivided into 2: COVID Calculator and CO₂ concentration in ppm. The simulations evaluated the impact of inserting a constant ventilation rate based on guidelines aimed at controlling the COVID-19 pandemic (10 L/s for each person) and the demanded control ventilation (DCV). The results indicate the natural ventilation (NV) scenarios have lower energy consumption and mixed-mode has the best results in both criteria. The best result was with DCV and only constant ventilation rate can guarantee IAQ 100% of the time.

Author Biographies

Tiago Vieira Pereira, Universidade Federal de Santa Catarina

Mestre em Arquitetura e Urbanismo pela Universidade Federal de Santa Catarina

Veridiana Atanasio Scalco, Universidade Federal de Santa Catarina

Pós-doutorado em Arquitetura e Urbanismo pela Universidade Federal de Santa Catarina

Caio Frederico e Silva, Universidade de Brasília

Pós-Doutorado na Universidade de Harvard (Visiting Scholar 2019-2020), ligado ao Harvard Herbarium na Faculty of Arts and Sciences e à Escola de Design (Graduate School of Design - GSD), onde é pesquisador colaborador no Critical Landscapes Design Lab (Bolsista Pós-Doc FAP-DF 2019)

Diretor da Faculdade de Arquitetura e Urbanismo da Universidade de Brasília

References

ABNT. NBR 16401-3: Instalações de ar-condicionado — Sistemas centrais e unitários Parte 3: Qualidade do ar interior. Associação Brasileira de Normas Técnicas, p. 8, 2008.

AL-RASHIDI, Khaled; LOVEDAY, Dennis; AL-MUTAWA, Nawaf. Impact of ventilation modes on carbon dioxide concentration levels in Kuwait classrooms. Energy and Buildings, v. 47, p. 540–549, 2012. Disponível em: <http://dx.doi.org/10.1016/j.enbuild.2011.12.030>.

ARAÚJO, Mayna Lais Tenório De. AVALIAÇÃO DE DESEMPENHO TÉRMICO EM CRECHE DO PROGRAMA PROINFÂNCIA NAS ZONAS BIOCLIMÁTICAS BRASILEIRAS. 2019.

ASHRAE. American Society of Heating Refrigerating and Air-Conditioning Engineers (ASHRAE). Standard 55. Thermal environmental conditions for human occupancy. ANSI/ASHRAE Standard - 55, v. 7, p. 6, 2017.

ASHRAE. AMERICAN SOCIETY OF HEATING REFRIGERATING AND AIR CONDITIONING ENGINEERS (ASHRAE). Standard 62.1. Ventilation for Acceptable Indoor Air Quality. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Atlanta. 2019. Disponível em: <http://www.techstreet.com/ashrae/products/1865968>.

BELMONTE, J. F.; BARBOSA, R.; ALMEIDA, Manuela G. CO 2 concentrations in a multifamily building in Porto, Portugal: Occupants’ exposure and differential performance of mechanical ventilation control strategies. Journal of Building Engineering, v. 23, n. October 2018, p. 114–126, 2019. Disponível em: <https://doi.org/10.1016/j.jobe.2019.01.008>.

CHENARI, Behrang e colab. Simulation of Occupancy and CO2-based Demand-controlled Mechanical Ventilation Strategies in an Office Room Using EnergyPlus. Energy Procedia, v. 113, p. 51–57, 2017.

DORNELLES, Kelen Almeida. Biblioteca de absortância de telhas: base de dados para análise de desempenho termoenergético de edifícios. 2021.

DUARTE, Rogério; GOMES, Maria da Glória; RODRIGUES, António Moret. Classroom ventilation with manual opening of windows: Findings from a two-year-long experimental study of a Portuguese secondary school. Building and Environment, v. 124, p. 118–129, 2017.

ELI, Letícia Gabriela e colab. Manual de Simulação Computacional de Edifícios com o Uso do Objeto Ground Domain no Programa EnergyPlus - Versão 9.0.1. 2019.

FNDE. Memorial Descritivo e Especificações Técnicas. n. 51, p. 1–20, 2015.

FNDE, © 2017. INFRAESTRUTURA FISICA (ESCOLAR). Disponível em: <https://www.fnde.gov.br/programas/par/eixos-de-atuacao/infraestrutura-fisica-escolar>.

GONZALES, Tomaz Silva e colab. Dissertação de Mestrado Integração de Estratégias Passivas de Climatização em Escolas no Contexto Climático de Brasília ( DF ). 2021.

INMETRO. Instrução Normativa Inmetro para a Classificação de Eficiência Energética de Edificações Comerciais, de Serviços e Públicas. p. 139, 2021. Disponível em: <http://www.inmetro.gov.br/legislacao/rtac/pdf/RTAC002707.pdf>.

LAMBERTS, Roberto; DUTRA, Luciano; PEREIRA, Fernando Oscar Ruttkay. Eficiência Energética na Arquitetura. 3. ed. Rio de Janeiro, 2014.

LOPES, Adriano Felipe Oliveira. Da Simulação ao Projeto : avaliação de conforto térmico em ambiente escolar padronizado. p. 130, 2020. Disponível em: <https://repositorio.unb.br/handle/10482/38711>.

MENTEŞE, Sibel e colab. Bacteria and fungi levels in various indoor and outdoor environments in Ankara, Turkey. Clean - Soil, Air, Water, v. 37, n. 6, p. 487–493, 2009.

MUJAN, Igor e colab. Influence of indoor environmental quality on human health and productivity - A review. Journal of Cleaner Production, v. 217, p. 646–657, 2019.

NICAS, Mark; NAZAROFF, William W.; HUBBARD, Alan. Toward understanding the risk of secondary airborne infection: Emission of respirable pathogens. Journal of Occupational and Environmental Hygiene, v. 2, n. 3, p. 143–154, 2005.

NOAKES, Catherine J.; ANDREW SLEIGH, P. Mathematical models for assessing the role of airflow on the risk of airborne infection in hospital wards. Journal of the Royal Society Interface, v. 6, n. SUPPL. 6, 2009.

O’NEILL, Zheng D. e colab. Energy savings and ventilation performance from CO2-based demand controlled ventilation: Simulation results from ASHRAE RP-1747 (ASHRAE RP-1747). Science and Technology for the Built Environment, v. 26, n. 2, p. 257–281, 2020. Disponível em: <https://doi.org/10.1080/23744731.2019.1620575>.

OLIVEIRA, Candi Citadini De; RUPP, Ricardo Forgiarini; GHISI, Enedir. Influence of environmental variables on thermal comfort and air quality perception in office buildings in the humid subtropical climate zone of Brazil. Energy and Buildings,, v. 243, p. 110982, 2021. Disponível em: <https://doi.org/10.1016/j.enbuild.2021.110982>.

OMRANI, Sara e colab. Ceiling fans as ventilation assisting devices in buildings: A critical review. Building and Environment, v. 201, n. February, p. 108010, 2021. Disponível em: <https://doi.org/10.1016/j.buildenv.2021.108010>.

PENG, Zhen; DENG, Wu; TENORIO, Rosangela. Investigation of indoor air quality and the identification of influential factors at primary schools in the north of China. Sustainability (Switzerland), v. 9, n. 7, 2017.

PUNGERCAR, Vesna e colab. A new retrofitting strategy for the improvement of indoor environment quality and energy efficiency in residential buildings in temperate climate using prefabricated elements. Energy and Buildings, v. 241, p. 110951, 2021. Disponível em: <https://doi.org/10.1016/j.enbuild.2021.110951>.

REHVA. COVID-19 Ventilation Calculator documentation. 2022.

REHVA. REHVA COVID-19 guidance document. 2021.

WHO. Roadmap to improve and ensure good indoor ventilation in the context of COVID-19. 2021.

Published

2023-10-26

How to Cite

PEREIRA, Tiago Vieira; SCALCO, Veridiana Atanasio; SILVA, Caio Frederico e. The impact of air renewal on indoor air quality and thermal conditioning in classrooms. In: ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO, 17., 2023. Anais [...]. [S. l.], 2023. p. 1–10. DOI: 10.46421/encac.v17i1.4629. Disponível em: https://eventos.antac.org.br/index.php/encac/article/view/4629. Acesso em: 5 jul. 2024.

Issue

Section

3. Conforto Térmico

Most read articles by the same author(s)

1 2 > >>