Sensação térmica e índices UTCI e PET em experimento dinâmico com mochila bioclimática
DOI:
https://doi.org/10.46421/entac.v20i1.6054Palavras-chave:
Conforto térmico., Mochila Bioclimática., Índices de Conforto.Resumo
A maior parte dos estudos de conforto térmico humano estão concentrados na avaliação de ambientes internos, porém, nos últimos anos, devido às consequências das mudanças climáticas, pesquisadores de vários países vêm desenvolvendo novas estratégias para avaliação do conforto térmico em espaços ao ar livre. Esta pesquisa tem como objetivo avaliar o conforto térmico humano por meio de avaliação subjetiva e dos índices térmicos PET e UTCI. A partir de um experimento longitudinal realizado no Parque Zoobotânico em João Pessoa-PB, registraram-se variáveis microclimáticas utilizando mochila bioclimática e aplicados questionários de avaliação subjetiva da sensação, conforto e preferência térmica em participantes pré-selecionados, cujas respostas subjetivas foram comparadas aos índices PET e UTCI. Constatou-se que, ao longo do transecto, as sensações térmicas estiveram intrinsicamente relacionadas às condições ambientais. Elementos como vegetação, exposição solar e sombreamento influenciaram nas sensações térmicas e no conforto. O UTCI apresentou valor máximo de 31,3°C indicando moderado estresse para o calor. O PET apresentou valor máximo de 29,6°C indicando estresse leve para o calor.
Referências
HAJAT, S.; KOSATKY, T. Heat-related mortality: a review and exploration of heterogeneity. Journal of Epidemiology & Community Health, 64(9), 2010 p. 753-760.
HALES, S. K. S.; LLOYD, S.; CAMPBELL., L. D. Quantitative risk assessment of the effects of climate change on selected causes of death, 2030s and 2050s. World Health Organization, 2014.
CHENG, W.; & LI, D.; LIU, Z.; BROWN, R. Approaches for identifying heat-vulnerable populations and locations: A systematic review. Science of The Total Environment. 799. 2021.
GARTLAND, L. Ilhas de Calor: como mitigar zonas de calor em áreas urbanas. Tradução Silvia Helena Gonçalves. São Paulo: Oficina de Textos, 2010.
OKE, T.; MILLS, G.; CHRISTEN, A.; VOOGT, J. Urban Climates. Cambridge University Press, 2017.
TSOKA, S.; TSIKALOUDAKI, K.; THEODOSIOU, T.; BIKAS, D. Urban warming and cities’ microclimates: Investigation methods and mitigation strategies—a review. Energies, 13(6), 2020. 1414.
SUN, C. KATO, S.; GOU, Z. Application of Low-Cost Sensors for Urban Heat Island Assessment: A Case Study in Taiwan. Sustainability, 11(10), 2019, 2759.
ROMERO, M.; BAPTISTA, G.; LIMA, E.; WERNECK, D.; VIANNA, E.; SALES, G. Mudanças climáticas e ilhas de calor urbanas. Brasília, Universidade de Brasília, Faculdade de Arquitetura e Urbanismo, 2019 – 1ª edição / Editora ETB pág.79.
DRACH, C.; EMMANUEL, R. Interferências da forma urbana na dinâmica da temperatura intraurbana. Revista de Morfologia Urbana, 2(2), 2014 p. 55-70.
LAU, K.; SHI, Y.; NG, E. Dynamic response of pedestrian thermal comfort under outdoor transient conditions. International Conference on Urban Comfort and Environmental Quality, 2017.
LIU, Z.; CHENG, K.; HE. Y.; JIM, C.; BROWN, R.; SHI, Y.; LAU, K.; NG, E. Microclimatic measurements in tropical cities: Systematic review and proposed guidelines. Building and Environment, 222(1), 2022. 109411.
PIGLIAUTILE, I.; PISELLO, A. L. Environmental data clustering analysis through wearable sensing techniques: New bottom-up process aimed to identify intra-urban granular morphologies from pedestrian transects. Building and Environment, 171, 2022. 106641.
KIMMLING, M.; HOFFMANN, S. Behaglichkeitsmonitoring – flächendeckend und kostengünstig mit der Sensorstation CoMoS. Bauphysik, 41(2), 2019.
ROMERO, M.; LIMA, E.; WERNECK, D.; PAZOS, V. Instrumentação para medições na escala microclimática: uma proposta de mochila bioclimática. Cadernos de Arquitetura e Urbanismo, 1(26),2020, p. 96-105.
ALI, A.; ZANZINGER, Z.; DEBOSE, D.; STEPHENS, B. Open Source Building Science Sensors (OSBSS): A low-cost Arduino-based platform for long-term indoor environmental data collection. Building and Environment, 100, 2016 p. 114-126.
TRENTO, D.; TRENTO, T.; KRÜGER, E. Application of Arduino-Based Systems as Monitoring Tools in Indoor Comfort Studies: A Bibliometric Analysis. International Journal of Architectural Engineering Technology. v.7, n.1, 2020, p.1-12.
CHOKHACHIAN, A.; KA-LUN LAU, K.; PERINI, K.; AUER, T. Sensing transient outdoor comfort: A georeferenced method to monitor and map microclimate. J. Build. Eng. v. 20, n. 1, 2018. p. 94–104.
NOUMAN, A. S.; CHOKHACHIAN, A.; SANTUCCI, D.; AUER, T. Prototyping of Environmental Kit for Georeferenced Transient Outdoor Comfort Assessment. ISPRS Int. J. Geo-Inf. v.8, n.76, 2019, p.1-23.
CUREAU, R.; PIGLIAUTILE, I.; PISELLO, A. A New Wearable System for Sensing Outdoor Environmental Conditions for Monitoring Hyper-Microclimate. Sensors, v.22, n.50, 2022.
IHLENFELD, W. Desenvolvimento de equipamento de baixo custo para condução de pesquisa de campo dinâmica em conforto ambiental em espaços abertos. 2024. 197p. Dissertação (Mestrado em Engenharia Civil) – Universidade Tecnológica Federal do Paraná. Curitiba, 2024.
BORGES, V.; CALLEJAS, I.; DURANTE, L. Thermal sensation in outdoor urban spaces: a study in a Tropical Savannah climate, Brazil. International Journal of Biometeorology, 64, 2020. p. 533–545.
FANGER, P. O. Assessment of man's thermal comfort in practice. British Journal of Industrial Medicine, 30(4), 1973, p. 313-324.
HÖPPE, P. "The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment". International Journal of Biometeorology, 43(2), 1999, p. 71–75.
MONTEIRO, L.; ALUCCI, M. Questões teóricas de conforto térmico em espaços abertos: consideração histórica, discussão do estado da arte e proposição de classificação de modelos. Ambiente Construído, 7(3), 2007, p. 43-58.
FIALA, D.; HAVENITH, G.; BRÖDE, P.; KAMPMANN, B.; JENDRITZKY, G. UTCI-Fiala Multi-Node Model of Human Heat Transfer and Temperature Regulation. International Journal of Biometeorology, special issue UTCI, 2011.
ROSSI, F.; KRUGER, E. Definição de faixas de conforto e desconforto térmico para espaços abertos em Curitiba, PR, com o índice UTCI. Ambiente Construído, Porto Alegre, v. 12, n. 1, 2012, p. 41-59.
KRÜGER, E. Applications of the Universal Thermal Climate Index UTCI in Biometeorology. Springer, 2021.
KRÜGER, E.; DRACH, P. Impactos do uso de climatização artificial na percepção térmica em espaços abertos no centro do Rio de Janeiro. Ambiente Construído, 16(2), 2016, p. 133-148.
LABAKI et al., 2012) LABAKI, L.; FONTES, M.; BUENO-BARTHOLOMEI, B.; DACANAL, C. Thermal comfort in public open spaces: studies in pedestrian streets in São Paulo State, Brazil. Ambiente Construído, 12(1), 2012, p. 167-183.
MONTEIRO, L.; ALUCCI, M. Modelos Preditivos de Estresse Termo-Fisiológico: estudo empírico comparativo em ambientes externos. In: ENCONTRO NACIONAL DE TECNOLOGIA NO AMBIENTE CONSTRUÍDO, 12., Fortaleza. Anais... Fortaleza: Antac, 2008.
KRÜGER, E.; IHLENFELD, W.; LEDER, S.; CARVALHO, L. Application of microcontroller‑based systems in human biometeorology studies: a bibliometric analysis. International Journal of Biometeorology, 2023.
HLENFELD, W.; KRÜGER, E.; LEDER, S.; QUADROS, B.; LIMA, L. Prototipação de sistema portátil de monitoramento ambiental de baixo custo para estudos de conforto ambiental em espaços abertos. XVII Encontro Nacional de Conforto no Ambiente Construído - XIII Encontro Latino-Americano de Conforto no Ambiente Construído, São Paulo – SP, 2023.
International Organization for Standardization 7726. Ergonomics of the thermal environments: instruments for measuring physical quantities. Geneva, 1998.
International Organization for Standardization 10551. Ergonomics of the thermal environments: assessment of the influence of the thermal environment using subjective judgment scales. Geneva, 1995.
International Organization for Standardization 7730. Ergonomics of the thermal environments: analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Geneva: International Organization for Standardization, 2005.
MATZARAKIS A, RUTZ F, MAYER H. Modelling Radiation fluxes in simple and complex environments - Basics of the RayMan model. International Journal of Biometeorology, 54, 2010. p. 131-139.