Comfort and thermal preference in educational buildings in the Center-South region of Brazil

Authors

DOI:

https://doi.org/10.46421/entac.v19i1.2075

Keywords:

Thermal Comfort, Tropical weather, Educational building, PMV, Air conditioner

Abstract

This study aimed to investigate the perception, preference and thermal sensation of university students in buildings in dry tropical climates that operate with air conditioning, in the cities of Naviraí and Campo Grande-MS. For this, measurements of physical parameters were carried out concomitantly with the collection of information about the spaces provided by their users through electronic questionnaires. The collected data were processed through statistical analysis. As a result, there was a lack of evidence to justify the narrow operating temperature limits defined by the existing regulations, in addition, this research provides subsidies for the understanding of thermal issues in the region.

Author Biographies

Pollyanna Meireles Cordeiro, Federal University of Mato Grosso do Sul

Specialist in Teaching for Professional, Scientific and Technological Education by the Federal Institute of Mato Grosso do Sul. Master's student in Energy Efficiency and Sustainability at the Federal University of Mato Grosso do Sul (Campo Grande - MS, Brazil).

Márcio José Sorgato, Federal Technological University of Paraná

PhD in Civil Engineering from the Federal University of Santa Catarina. Assistant teacher at Federal Technological University of Paraná  (Curitiba - PR, Brazil).

References

CLIMATE DATA. Dados Climáticos Para Cidades Mundiais. Disponível em: https://pt.climate-data.org/. Acesso em: 20 maio 2022.

DASCALAKI, E. G.; SERMPETZOGLOU, V. G. Energy performance and indoor environmental quality in Hellenic schools. Energy and Buildings, v. 43, n. 2–3, p. 718–727, 2011. DOI: https://doi.org/10.1016/j.enbuild.2010.11.017.

DE VECCHI, R.; LAMBERTS, R.; CANDIDO, C. M. The role of clothing in thermal comfort: how people dress in a temperate and humid climate in Brazil. Ambiente Construído, Porto Alegre, v. 17, n. 1, p. 69-81, jan./mar. 2017.

Empresa de Pesquisa Energética (Brasil). Balanço Energético Nacional 2017: Ano base 2016. Rio de Janeiro, 2017.

Empresa de Pesquisa Energética (Brasil). Balanço Energético Nacional 2021: Ano base 2020. Rio de Janeiro, 2021.

FANGER, O. The Influence of Certain Special Factors on the Application of the Comfort Equation. 1. Ed. New York: McGraw-Hill Co, 1970.

GOOGLE INC. Google Forms. Disponível em: https://www.google.com/intl/pt-BR/forms/about/. Acesso em: 20 maio 2022.

GUEVARA, G.; SORIANO, G.; MINO-RODRIGUEZ, I. Thermal comfort in university classrooms: An experimental study in the tropics. Building and Environment, v. 187, p. 107430, jan. 2021. DOI: https://doi.org/10.1016/j.buildenv.2020.107430.

HWANG, R.-L. et al Additive Model for Thermal Comfort Generated by Matrix Experiment Using Orthogonal Array. Building and Environment, v. 44, n. 8, p. 1730-1739, 2009.

INSTITUTO NACIONAL DE METEOROLOGIA. Normais Climatológicas do Brasil. Disponível em: https://portal.inmet.gov.br/normais. Acesso em: 20 maio 2022.

International Energy Agency. The Future of Cooling: Opportunities for energy-efficient air conditioning. The Future of Cooling: Opportunities. França, 2018.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 10551, Ergonomics of the physical environment — Subjective judgement. Suíça, 2019.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 7726: Ergonomics of the thermal environment — Instruments for measuring physical quantities. Suíça, 1998.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 7730 - Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Suíça, 2015.

JACOBS, D. E.; WILSON, J.; DIXON S.L.; SMITH J.; EVENS, A. The relationship of housing and population health: A 30-year retrospective analysis. Environmental Health Perspectives, v. 117, n. 4, p. 597–604, dec. 2009. DOI: https://doi.org/10.1289%2Fehp.0800086.

JOWKAR, M.; DE DEAR, R.; BRUSEY, J. Influence of long-term thermal history on thermal comfort and preference. Energy and Buildings, v.210, n.1, mar. 2020. DOI: https://doi.org/10.1016/j.enbuild.2019.109685.

KEITH, S. W. et al. Putative contributors to the secular increase in obesity: Exploring the roads less traveled. International Journal of Obesity, v. 30, n. 11, p. 1585–1594, jun. 2006. DOI: https://doi.org/10.1038/sj.ijo.0803326.

KINGMA, B.; FRIJNS, A.; LICHTENBELT, W. V. M. The thermoneutral zone: Implications for metabolic studies. Frontiers in Bioscience-Elite, v.4, p. 1975–1985, jan. 2012. DOI: https://doi.org/10.2741/518.

KOTTEK, M.; GRIESER, J.; BECK, C.; RUDOLF, B.; RUBEL, F. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, v. 15, n. 3, p. 259–263, jul. 2006. DOI: https://doi.org/10.1127/0941-2948/2006/0130.

LAMBERTS, R. et al Towards a Brazilian Standard on Thermal Comfort 2013. Disponível em:<http://www.labeee.ufsc.br/sites/default/files/publicacoes/relatorios_pesquisa/RP_Towards_a_Brazilian_Standard_Complete_Version.pdf >. Acesso em: 05 ago. 2022.

RAMOS, G. et al. Adaptive behavior and air conditioning use in Brazilian residential buildings. Building Research and Information, v. 49, n. 5, p. 496-511, Aug. 2020. DOI: https://doi.org/10.1080/09613218.2020.1804314.

RUPP, R. F.; KIM, J.; DE DEAR, R.; GHISI, E. Associations of occupant demographics, thermal history and obesity variables with their thermal comfort in air-conditioned and mixed-mode ventilation office buildings. Building and Environment, v. 135, n.1, p. 1–9, may. 2018. DOI: https://doi.org/10.1016/j.buildenv.2018.02.049.

RUPP, R.F.; GHISI, E. Predicting Thermal Comfort in Office Buildings in a Brazilian Temperate and Humid Climate. Energy and Buildings, v. 144, p. 152-166, 2017.

SCHELLEN, L.; LICHTENBELT W. D. V. M.; LOOMANS M. G. L. C.; TOFTUM, J.; WIT DE, M. H. Differences between young adults and elderly in thermal comfort, productivity, and thermal physiology in response to a moderate temperature drift and a steady-state condition. Indoor Air, v. 20, n. 4, p. 273–283, 2010. DOI: https://doi.org/10.1111/j.1600-0668.2010.00657.

SILVA, A. S.; LAMBERTS, R.; GHISI, E. Performance evaluation of long-term thermal comfort indices in building simulation according to ASHRAE Standard 55. Building and Environment, v. 102, p. 95-115, jun. 2016.

THE AMERICAN SOCIETY OF HEATING. ASHRAE 55: Thermal environmental conditions for human occupancy. Estados Unidos da América, 2020.

TREBILCOCK, M.; SOTO-MUÑOZ, J.; YAÑEZ, M.; SAN MARTIN, R. The right to comfort: A field study on adaptive thermal comfort in free-running primary schools in Chile. Building and Environment, v. 114, p. 455–469, 2017. DOI: https://doi.org/10.1016/j.buildenv.2016.12.036.

ZHANG, H.; ARENS, E.; ZHAI, Y. A review of the corrective power of personal comfort systems in non-neutral ambient environments. Building and Environment, v. 91, p. 15–41, sep. 2015. DOI: https://doi.org/10.1016/j.buildenv.2015.03.013.

Published

2022-11-07

How to Cite

CORDEIRO, Pollyanna Meireles; SORGATO, Márcio José. Comfort and thermal preference in educational buildings in the Center-South region of Brazil. In: NATIONAL MEETING OF BUILT ENVIRONMENT TECHNOLOGY, 19., 2022. Anais [...]. Porto Alegre: ANTAC, 2022. p. 1–20. DOI: 10.46421/entac.v19i1.2075. Disponível em: https://eventos.antac.org.br/index.php/entac/article/view/2075. Acesso em: 22 nov. 2024.

Issue

Section

(Inativa) Conforto Ambiental e Eficiência Energética

Most read articles by the same author(s)

Similar Articles

<< < 31 32 33 34 35 36 37 38 39 40 > >> 

You may also start an advanced similarity search for this article.