Assessment of The Wind Pressure Coefficient Data Prediction on H-Shape Buildings Using RANS CFD Simulations
DOI:
https://doi.org/10.46421/entac.v20i1.5719Keywords:
H-shaped buildings, Wind pressure coefficients, Natural ventilation, Building Performance Simulation, Computational Fluid Dynamics (CFD)Abstract
Airflow Network (AFN)/Building Energy Simulations (BES) is a common approach to include natural ventilation effect in the thermal comfort and energy usage analyzes. For this method the Wind Pressure Coefficient (Cp) is an important input; although this information can be found though Computational Fluid Dynamics (CFD) simulations, it can carry some uncertainties, also some calculation models can be time consuming, such as the LES (Large Eddy Simulation). The “H” floor plan is frequently used in residential design, and in Brazil it is common for social housing porpoise. This work objective is to evaluate the accuracy of RANS (Reynolds-averaged Navier–Stokes) CFD simulations (K-ω SST and RNG k-ε) in predicting Cp for a low-rise (up to 4 floors) and H-shaped model. There were performed CFD simulations (Cp simulator) and Wind Tunnel experiments (LNEC -Lisbon) for 20 wind attack angles, reproducing an atmospheric boundary layer consistent to the suburban condition (α=0,23). Overall, the CFD turbulence models analyzed are in good agreement with the wind tunnel results (R2=0.9).
References
GIVONI, B. Energy and buildings, 1992.
PARKINSON, Thomas; DE DEAR, Richard; CANDIDO, Christhina. Building Research & Information, p. 1–14, 2015. Disponível em: <http://www.tandfonline.com/doi/abs/10.1080/09613218.2015.1059653>. Acesso em: 16 jul. 2015.
RIVERO, Roberto. Porto Alegre: D. C. Luzzatto, 1986.
RUDNICK, S. N.; MILTON, D. K. Indoor Air, v. 13, n. 3, p. 237–245, 2003.
ZEMOURI, C; AWAD, S F; VOLGENANT, C M C; et al. Journal of dental research, p. 22034520940288, 2020. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/32614681>.
FADAEI, Abdolmajid. European Journal of Sustainable Development Research, v. 5, n. 2, p. em0157, 2021.
BLOCKEN, B. Journal of Wind Engineering and Industrial Aerodynamics, v. 129, p. 69–102, 2014. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-84899526959&doi=10.1016%2Fj.jweia.2014.03.008&partnerID=40&md5=edbee306f7a441fdf70dba490d3ad3de>.
ENERGYPLUS. 2015. Disponível em: <http://apps1.eere.energy.gov/buildings/energyplus/pdfs/inputoutputreference.pdf>.
CÓSTOLA, Daniel; ALUCCI, Marcia. Proceedings: Building Simlation 2007, n. 2003, p. 999–1006, 2007.
BRE, Facundo; GIMENEZ, Juan M.; FACHINOTTI, Víctor D. Energy and Buildings, v. 158, p. 1429–1441, 2018. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85035068263&doi=10.1016%2Fj.enbuild.2017.11.045&partnerID=40&md5=5c11777852034a87f5d1240af7a1ef9e>. Acesso em: 14 fev. 2020.
NIEMANN, Hans-Jürgen. Journal of Wind Engineering and Industrial Aerodynamics, v. 48, n. 2–3, p. 145–161, 1993. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/0167610593901339>.
COOK, N.J. Journal of Wind Engineering and Industrial Aerodynamics, v. 1, p. 3–12, 1975. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/0167610575900033>.
MEDINILHA-CARVALHO, Talita Andrioli; MARQUES DA SILVA, Fernando Vítor; BRE, Facundo; et al. Buildings, v. 14, n. 3, p. 762, 2024. Disponível em: <https://www.mdpi.com/2075-5309/14/3/762>.
STATHOPOULOS, Theodore. Journal of Wind Engineering and Industrial Aerodynamics, v. 67–68, p. 509–532, 1997.
GIMENEZ, Juan M.; BRE, Facundo; NIGRO, Norberto M.; et al. Building Simulation, v. 11, n. 6, p. 1255–1271, 2018. Disponível em: <http://link.springer.com/10.1007/s12273-018-0461-9>. Acesso em: 2 jul. 2019.
WONG, S.Y. Y.; LAM, K.M. M. In: Journal of Wind Engineering and Industrial Aerodynamics. [s.l.]: Elsevier, 2013, v. 114, p. 72–82. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0167610513000044>. Acesso em: 13 out. 2023.
TEIXEIRA, Cristiano André; INVIDIATA, Andrea; SORGATO, Márcio José; et al. Florianopolis: Centro Brasileiro de Eficiência Energética em Edificações (CB3e), 2015.
MONTES, María Andrea Triana. Universidade Federal de Santa Catarina, Florianópolis, 2016.
SECRETARIA NACIONAL DA HABITAÇÃO. Disponível em: <http://sishab.mdr.gov.br/dados_abertos/sistema_habitacao>. Acesso em: 19 dez. 2022.
MORAIS, Juliana M S C; LABAKI, Lucila Chebel. In: PLEA. [s.l.: s.n.], 2013.
CHENG, C. K.C.; LAM, K. M.; LEUNG, Y. T.A.; et al. Journal of Wind Engineering and Industrial Aerodynamics, v. 99, n. 2–3, p. 79–90, 2011.
HONG KONG GOVERNMENT. Hong Kong: Legislative Council of Hong Kong, 2004. Disponível em: <https://www.legco.gov.hk/yr03-04/english/sc/sc_sars/reports/sars_rpt.htm>.
WANG, Dayang; YU, X.J.; ZHOU, Y.; et al. Wind and Structures, v. 20, n. 4, p. 579–607, 2015. Disponível em: <http://koreascience.or.kr/journal/view.jsp?kj=KJKHCF&py=2015&vnc=v20n4&sp=579>.
MEDINILHA-CARVALHO, Talita Andrioli; SILVA, Fernando Vítor Marques da; BRE, Facundo; et al. Disponível em: <https://doi.org/10.5281/zenodo.8257276>. Acesso em: 1 set. 2023.
BRE, Facundo; GIMENEZ, Juan M. Building Simulation, v. 15, n. 8, p. 1507–1525, 2022. Disponível em: <https://cpsimulator.cimec.org.ar/>.
BRE, Facundo; GIMENEZ, Juan M. BUILDING SIMULATION, v. 15, n. 8, p. 1507–1525, 2022.
FRANKE, Jörg; HELLSTEN, Antti; SCHLÜNZEN, Heinke; et al. Brussels: COST European Cooperation in Science and Technology, 2007. Disponível em: <https://hal.science/hal-04181390>. Acesso em: 11 ago. 2024.
ALI, Mir M; AL-KODMANY, Kheir. Buildings, v. 2, n. 4, p. 384–423, 2012. Disponível em: <http://www.mdpi.com/2075-5309/2/4/384>.
GIMENEZ, Juan M.; BRE, Facundo. Building and Environment, v. 237, p. 110321, 2023. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0360132323003487>.
LIU, Y X; HONG, H P. WIND AND STRUCTURES, v. 34, n. 6, p. 469–482, 2022.