Comparison of different approaches for measuring the physical evolution of construction using RPAS
DOI:
https://doi.org/10.46421/entac.v20i1.5804Keywords:
UAV, Civil Construction, Inspection, RPAS, ComparativeAbstract
The relative low acquisition cost, the possibility of obtaining images from perspectives that are unfeasible for the observer at ground level and minimal interference in the dynamics of construction and execution of works are some of the characteristics of using Remotely Piloted Aircraft System (RPAS)/Drone which has gradually increased its presence in construction sites. Given different possibilities of approach for use in monitoring the physical evolution of enterprises, the objective of the present work is to identify, through systematic literature mapping, the different levels of approach to the use of the tool, its embedded technologies and the different characteristics associated with its use. The results obtained and their main associated contributions identify usage trends and indicate that the most diverse technologies associated with the use of RPAS, including the use of BIM, photogrammetry and LiDAR-type (Light Detection and Ranging) sensors, require the support of a diverse infrastructure to digital acquisition, transmission, processing and storage.
References
BRASIL. Ministério da Defesa. Departamento de Controle do Espaço Aéreo. Qual a diferença entre drone, VANT e RPAS? 2019.
BRASIL. Ministério da Defesa. Departamento de Controle do Espaço Aéreo. ICA 100-40/2023. 05 2023.
VANDERHORST, H. R.; SURESH, S.; SURESH, R. Systematic literature research of the current implementation of unmanned aerial
system (UAS) in the construction industry. International Journal of Innovative Technology and Exploring Engineering (IJITEE), pp.
-428, 09 2019.
SABO, A.; KULJIC, B.; SZAKÁLL, T. Practical application of the drone technology in civil engineering. In: Science in Practice
Conference. 2019.
ALBEAINO, G.; GHEISARI, M. Trends, benefits, and barriers of unmanned aerial systems in the construction industry: a survey
study in the United States. Journal of Information Technology in Construction, v. 26, 2021.
TURKAN, Y.; BOSCHE, F.; HASS, C. T.; HASS, R. “Automated progress tracking using 4D schedule and 3D sensing technologies,”
Automation in Construction, vol. 22, pp. 414-421, 2012. et al. Automated progress tracking using 4D schedule and 3D sensing
technologies. Automation in construction, v. 22, p. 414-421, 2012.
IRIZARRY, J.; COSTA, D. B. Exploratory study of potential applications of unmanned aerial systems for construction management
tasks. Journal of Management in Engineering, v. 32, n. 3, p. 05016001, 2016.
AGOSTINHO, H. L.; HASHIZUME, S. H.; OLIVIERI, H. “Aferição de obras habitacionais com o uso de RPAS/Drones,” ENCONTRO
NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO, 19, pp. 1-10, Anais [...] Porto Alegre: ANTAC, 2022.
TUTTAS, S.; BRAUN, A.; BORRMANN, A.; STILLA, U. Acquisition and consecutive registration of photogrammetric point clouds for
construction progress monitoring using a 4D BIM. PFG–journal of photogrammetry, remote sensing and geoinformation science,
v. 85, n. 1, p. 3-15, 2017.
PETTICREW, M.; ROBERTS, H. Systematic reviews in the social sciences: A practical guide. John Wiley & Sons, 2008.
PAI, M.; McCULLOCH, M.; GORMAN, J. D.; PAI, N.; ENANORIA, W.; KENNEDY, G.; THARYAN, P. ; COLFORD Jr, J. M. Clinical Research
Methods. The National Medical Journal of India, v. 17, n. 2, 2004.
ELGHAISH, F.; MATARNEH, S.; TALEBI, S.; KAGIOGLOU, M.; HOSSEINI, M. R.; ABRISHAMI, S. Toward digitalization in the construction
industry with immersive and drones technologies: a critical literature review. Smart and Sustainable Built Environment, v. 10, n. 3,
p. 345-363, 2021.
VAN ECK, N. J.; WALTMAN, L. VOSviewer Manual. Leiden, 2023.
GRÁCIO, M. C. C. Acoplamento bibliográfico e análise de cocitação: revisão teórico-conceitual. Encontros Bibli: revista eletrônica de
biblioteconomia e ciência da informação, v. 21, n. 47, p. 82-99, 2016.
JAHR, K.; BRAUN, A.; BORRMANN, A. Formwork detection in UAV pictures of construction sites. In: eWork and eBusiness in
Architecture, Engineering and Construction. CRC Press, 2018. p. 265-271.
VIZIOLI, S. H. T.; SILVA, G. R. O modelo tridimensional e a Arquitetura: do físico ao digital. Risco Revista de Pesquisa em
Arquitetura e Urbanismo (Online), v. 19, p. 79-95, 2021.
BASGALL, P. L.; KRUSE, F. A.; OLSEN, R. C. Comparison of lidar and stereo photogrammetric point clouds for change detection. In:
Laser Radar Technology and Applications XIX; and Atmospheric Propagation XI. SPIE, 2014. p. 214-227.
HUANG, R.; XU, Y.; HOEGNER, L.; STILLA, U. Semantics-aided 3D change detection on construction sites using UAV-based
photogrammetric point clouds. Automation in Construction, v. 134, p. 104057, 2022.
LEE, J. H.; PARK, J. H.; JANG, B. T. Progress Monitoring system based on Volume Comparison for the Construction Site. In: 2019
International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2019. p. 986-989.
GUPTA, S.; NAIR, S. Challenges in Capturing and Processing UAV based Photographic Data From Construction Sites. In: ISARC.
Proceedings of the International Symposium on Automation and Robotics in Construction. IAARC Publications, 2020. p. 911-918.
GUIMARÃES, A, A. O.; CESAR, C.G.; MELLO, C.C.S.; OLIVEIRA, R.D. Avaliação da eficácia da aplicação da aerofotogrametria no
AsBuilt de edificações para vistorias de licenciamento urbanístico. In: SIMPÓSIO BRASILEIRO DE GESTÃO E ECONOMIA DA
CONSTRUÇÃO, 13, 2023, Aracaju. Anais [...]. Porto Alegre: ANTAC, 2023.
TANG, P.; HUBER, D.; AKINCI, B.; LIPMAN, R.; LYTLE, A. Automatic reconstruction of as-built building information models from
laser-scanned point clouds: A review of related techniques. Automation in Construction, v. 19, n. 7, p. 829-843, 2010.
BOGNOT, J. R.; CANDIDO, C. G.; BLANCO, A. C.; MONTELIBANO, J. R. Y. Building construction progress monitoring using unmanned
aerial system (UAS), low-cost photogrammetry, and geographic information system (GIS). ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, v. 4, p. 41-47, 2018.
ANWAR, N.; IZHAR, M. A.; NAJAM, F. A. Construction monitoring and reporting using drones and unmanned aerial vehicles (UAVs).
In: The Tenth International Conference on Construction in the 21st Century (CITC-10). 2018. p. 2-4.
OUDJEHANE, A.; MOEINI, S.; BAKER, T. Construction Project Control and Monitoring with the Integration of Unmanned Aerial
Systems with Virtual Design and Construction Models. Canadian Society for Civil Engineering: Vancouver, BC, Canada, v. 1, p.
-406, 2017.
BRAUN, A.; TUTTAS, S.; STILLA, U.; BORRMANN, A. Process-and computer vision-based detection of as-built components on
construction sites. In: Proc. of the 35nd ISARC 2018. 2018.
BASSIER, M.; VERMANDERE, J.; DE WINTER, H. Linked building data for construction site monitoring: A test case. In: XXIV ISPRS
Congress Imaging Today, Foreseeing Tomorrow, Commission II. Copernicus GmbH, 2022. p. 159-165.
HAMLEDARI, H.; FISCHER, M. Construction payment automation using blockchain-enabled smart contracts and robotic reality
capture technologies. Automation in Construction, v. 132, p. 103926, 2021.
LEE, J. H.; PARK, J. H.; JANG, B. T. Design of robot based work progress monitoring system for the building construction site. In:
International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2018. p. 1420-1422.