Performance of the Trombe Wall in mild climates:

study of materials of the internal layer

Authors

DOI:

https://doi.org/10.46421/entac.v20i1.5806

Keywords:

Passive strategy, Solar energy, Bioclimatism, Computer simulation

Abstract

The Trombe Wall (PT) is a passive architectural strategy that uses solar radiation to improve the thermal performance of the built environment. Their investigations, however, have been focused on severe cold climates located in the northern hemisphere. This study aims, therefore, to verify the impacts of applying different materials (concrete, basalt stone and concrete block with mortar) in the high thermal mass layer of a PT on the thermal performance of an environment in two mild Brazilian bioclimatic zones ( Juiz de Fora - ZB3 and Brasília - ZB4). Through computer simulations carried out in the Designbuilder software, the results were compared to a base environment, without PT, and analyzed in the winter and summer periods. The results indicated that PT models made with concrete blocks and mortar resulted in a greater daily thermal amplitude of the indoor air in the two climates considered, both in winter and summer; although the latter, to a lesser extent. For the models made of concrete and basalt stone, the results indicated an increase in air temperature in both daily maximum and minimum temperatures, presenting the highest comfort rates, despite having generated slight warming in the summer. Among the simulated possibilities, PT's best performance scenario was in the winter in Juiz de Fora. For the others, the need for bioclimatic strategies associated with these systems is evident. However, no significant variations in the air temperature of the environment with PT were observed in relation to cases with concrete or basalt stone.

Author Biographies

Naiara Vilela Costa Costa, Universidade Federal de Juiz de Fora

Mestra em Ambiente Construído pelo Programa de Pós Graduação em Ambiente Construído da Universidade Federal de Juiz de Fora (Juiz de Fora- MG, Brasil)

Sabrina Andrade Barbosa, Universidade do Estado do Rio de Janeiro

Possui pós-doutorado em Ambiente Construído pela UFV (2017-2018). Professora adjunta do curso de Arquitetura e Urbanismo da Universidade do Estado do Rio de Janeiro (Petrópolis - RJ, Brasil) e professora colaboradora do Programa de Pós-Graduação em Ambiente Construído da Universidade Federal de Juiz de Fora (Juiz de Fora- MG, Brasil).

Klaus Chaves Alberto, Universidade Federal de Juiz de Fora

Pós-doutorado como Visiting Scholar na Graduate School of Architecture, Planning and Preservation (GSAPP) na Columbia University. Professor associado do curso de Arquitetura e Urbanismo e do Programa de Pós Graduação em Ambiente Construído da Universidade Federal de Juiz de Fora (Juiz de Fora- MG, Brasil)

References

WANG, Dengjia. HU, Liang. DU, Hu. LIU, Yanfeng. HUANG, Jianxiang. XU, Yanchao. LIU, Jiaping. Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls. Renewable and Sustainable Energy Reviews. China, vol 124, Pag. 109772, 2020.KOLAREVIC, B.; MALKAWI, A. M. (Ed.). Performative Architecture Beyond Instrumentality. Nova Iorque: Spon Press, 2005.

BEVILACQUA, P., BENEVENTO, F., BRUNO, R., & ARCURI, N. Are Trombe walls suitable passive systems for the reduction of the yearly building energy requirements?. Energy, v. 185, p. 554-566, 2019.

GU, W.; LI, G., XIERMAIMAITI, A., & MA, T. A review of recent techniques in performance augmentation and evaluation metrics of Trombe walls. Energy and Buildings, 113693, 2023.LEWIN, R. Complexity: life at the edge of chaos. 2. ed. Chicago: University of Chicago Press, 2000.

HAMI, K.; DRAOUI, B.; HAMI, O. The thermal performances of a solar wall. Energy, v. 39, n. 1, p. 11-16, 2012.

RABANI, Mehran; KALANTAR, Vali; RABANI, Mehrdad. Passive cooling performance of a test room equipped with normal and new designed Trombe walls: A numerical approach. Sustainable Energy Technologies and Assessments, v. 33, p. 69-82, 2019.

RABANI, Mehran. Experimental comparison of energy and exergy analysis of a new designed and a Normal Trombe wall. Energy, v. 260, p. 125050, 2022.

RABANI, Mehran; RABANI, Mehrdad. Heating performance enhancement of a new design trombe wall using rectangular thermal fin arrays: An experimental approach. Journal of Energy Storage, v. 24, p. 100796, 2019.

LIN, Y.; Ji, J.; Zhou, F.; Ma, Y.; Luo, K.; e Lu, X. Experimental and numerical study on the performance of a built-middle PV Trombe wall system. Energy and Buildings, v. 200, p. 47-57, 2019.

ABDULLAH, A. A.; ATALLAH, F. S.; AHMED, O. K.; e ALGUBURI, S. Effect of dusty weather on the performance of the PV/Trombe wall: Experimental assessment. Case Studies in Thermal Engineering, v. 39, p. 102419, 2022.

XIAO, Lan; QIN, Liang-Liang; WU, Shuang-Ying. Proposal and application of comprehensive thermal comfort evaluation model in heating seasons for buildings with solar Trombe wall. Applied Thermal Engineering, v. 213, p. 118774, 2022.

IRSHAD, K.; ALGARNI, S.; ISLAM, N.; REHMAN, S.; ZAHIR, M. H.; PASHA, A. A.; e PILLAI, S. N. Parametric analysis and optimization of a novel photovoltaic trombe wall system with venetian blinds: Experimental and computational study. Case Studies in Thermal Engineering, v. 34, p. 101958, 2022.

HONG, Xiaoqiang; LEUNG, Michael KH; HE, Wei. Thermal behaviour of Trombe wall with venetian blind in summer and transition seasons. Energy Procedia, v. 158, p. 1059-1064, 2019.

ISLAM, N.; IRSHAD, K.; ZAHIR, M. H.; e ISLAM, S. Numerical and experimental study on the performance of a Photovoltaic Trombe wall system with Venetian blinds. Energy, v. 218, p. 119542, 2021.

LI, S., Zhu, N., Hu, P., Lei, F., e Deng, R. Numerical study on thermal performance of PCM Trombe Wall. Energy Procedia, v. 158, p. 2441-2447, 2019.

LI, J., Zhang, Y., Zhu, Z., Zhu, J., Luo, J., Peng, F., e Sun, X. Thermal comfort in a building with Trombe wall integrated with phase change materials in hot summer and cold winter region without air conditioning. Energy and Built Environment, v. 5, n. 1, p. 58-69, 2024.

ZHOU, Shiqiang; RAZAQPUR, A. Ghani. CFD modeling and experimental validation of the thermal performance of a novel dynamic PCM Trombe wall: Comparison with the companion static wall with and without PCM. Applied Energy, v. 353, p. 121985, 2024.

SHEIKHOLESLAMI, M.; AL-HUSSEIN, Hazim RA. Modification of heat storage system involving Trombe wall in existence of paraffin enhanced with nanoparticles. Journal of Energy Storage, v. 58, p. 106419, 2023.

YANG, L., Dhahad, H. A., Chen, M., Huang, Z., Anqi, A. E., Rajhi, A. A., & Qader, D. N. Transient analysis of buildings with Trombe wall in a southern envelope and strengthening efficacy by adding phase change material. Journal of Building Engineering, v. 55, p. 104670, 2022.

ASKARI, Minoo; JAHANGIR, Mohammad H. Evaluation of thermal performance and energy efficiency of a Trombe wall improved with dual phase change materials. Energy, v. 284, p. 128587, 2023.

ELAOUZY, Y.; EL FADAR, A. Impact of key bioclimatic design strategies on buildings' performance in dominant climates worldwide. Energy for Sustainable Development, v. 68, p. 532-549, 2022.

SIMÕES, N.; MANAIA, M.; SIMÕES, I. Energy performance of solar and Trombe walls in Mediterranean climates. Energy, v. 234, p. 121197, 2021.

ABDULLAH, A. A.; ATALLAH, F. S.; AHMED, O. K.; e DAOUD, R. W. Performance improvement of photovoltaic/Trombe wall by using phase change material: Experimental assessment. Journal of Energy Storage, v. 55, p. 105596, 2022.

SANCHEZ, Patrick Facelli; HANCCO, Lisset Mercado. Trombe walls with porous medium insertion and their influence on thermal comfort in flats in Cusco, Peru. Energy and Built Environment, 2022.

KRÜGER, Eduardo; SUZUKI, Eimi; MATOSKI, Adalberto. Evaluation of a Trombe wall system in a subtropical location. Energy and Buildings, v. 66, p. 364-372, 2013.

CHARQUI, Z., EL MOUTAOUAKIL, L., BOUKENDIL, M., HIDKI, R., ZRIKEM, Z., e ABDELBAKI, A. Numerical simulation of turbulent coupled heat transfer in a Trombe wall subjected to periodic thermal excitations. Energy and Buildings, v. 278, p. 112631, 2023.

ALQAED, Saeed; MUSTAFA, Jawed; SHARIFPUR, Mohsen. Numerical study of the placement and thickness of blocks equipped with phase change materials in a Trombe wall in a room-thermal performance prediction using ANN. Engineering Analysis with Boundary Elements, v. 141, p. 91-116, 2022.

SAADATIAN, Omidreza. SOPIAN,K. LIM, C.H. ASIM, Nilofar. SULAIMAN, Meu. Trombe walls: A review of opportunities and challenges in research and development. Volume 16, Edição 8, Páginas 6340-6351, 2012.

HOU, L., LIU, Y., LIU, T., YANG, L., FENG, Y., e GAO, Q. Dynamic heat preservation at night for a Trombe wall with a built-in panel curtain in Western China. Solar Energy, v. 213, p. 284-299, 2021.

SERGEI, Kostikov; SHEN, Chao; JIANG, Yiqiang. A review of the current work potential of a trombe wall. Renewable and sustainable energy reviews, v. 130, p. 109947, 2020.

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS. ANSI/ASHRAE Standard 55: thermal environmental conditions for human occupancy. Atlanta, 2017.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 15220-3: Desempenho térmico de edificações Parte 3: Zoneamento bioclimático brasileiro e diretrizes construtivas para habitações unifamiliares de interesse social. Rio de Janeiro: ABNT, 2005.

Published

2024-10-07

How to Cite

COSTA, Naiara Vilela Costa; BARBOSA, Sabrina Andrade; ALBERTO, Klaus Chaves. Performance of the Trombe Wall in mild climates:: study of materials of the internal layer. In: NATIONAL MEETING OF BUILT ENVIRONMENT TECHNOLOGY, 20., 2024. Anais [...]. Porto Alegre: ANTAC, 2024. p. 1–11. DOI: 10.46421/entac.v20i1.5806. Disponível em: https://eventos.antac.org.br/index.php/entac/article/view/5806. Acesso em: 24 nov. 2024.

Issue

Section

Conforto Ambiental e Eficiência Energética

Most read articles by the same author(s)

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.