Potenciais aplicações das tecnologias da indústria 4.0 na construção modular

Autores

DOI:

https://doi.org/10.46421/sibragec.v13i00.2645

Palavras-chave:

Construção modular, Construção offsite, Construção 4.0, Indústria 4.0, Modular Building, Offsite construction, Construction 4.0, Industry 4.0

Resumo

A indústria da construção, embora globalmente significativa, tem uma performance menor em comparação a outros setores da economia. Em contrapartida, a construção modular, envolvendo a produção de componentes (módulos) em uma fábrica, apresenta maior agilidade, economia, sustentabilidade e qualidade. Ademais, a adaptação da Indústria 4.0 para a construção, ou Construção 4.0, promete vantagens em termos de eficiência e redução de desperdícios, aspectos essenciais para o aumento da competitividade no setor da construção. No entanto, pouco se sabe sobre a aplicação das tecnologias da Construção 4.0 na construção modular, levando à pergunta de quais tecnologias da Indústria 4.0 podem aplicar-se em etapas da construção modular? Consequentemente, neste artigo investigaram-se aplicações de tecnologias da Indústria 4.0 com potencial de uso nas etapas da construção modular, com base na revisão de literatura. Especificamente, identificaram-se aplicações relativas a dezenove tecnologias com potencial de uso em cinco fases da construção modular (planejamento e projeto; montagem off site; logística; montagem on site; e uso e ocupação). Esta identificação contribui com o conhecimento de usos potenciais de tecnologias da Indústria 4.0 na construção modular, bem como na forma de mapeá-las.

Downloads

Não há dados estatísticos.

Biografia do Autor

Beatriz Martins Folador, Universidade Federal de Santa Catarina

Graduada em Engenharia Civil pela Universidade Federal de Santa Catarina (Florianópolis - SC, Brasil)

Ricardo Juan José Oviedo-Haito, Universidade Federal de Santa Catarina

Doutorado em Ciências pela Universidade de São Paulo (São Paulo, SP). Professor adjunto da Universidade Federal de Santa Catarina (Florianópolis - SC, Brasil)

Referências

ALBERTIN, Marcos Ronaldo et al. Principais inovações tecnológicas da indústria 4.0 e suas aplicações e implicações na manufatura. Em: SIMPÓSIO DE ENGENHARIA DE PRODUÇÃO, XXVI., 2017, Bauru, São Paulo, Brasil. Anais[…], 2023. Tema: “Contribuições Da Engenharia De Produção Para Uma Economia De Baixo Carbono”. Disponível em: <https://repositorio.ufc.br/handle/riufc/60805>. Acesso em: 14 fev. 2023.

ANDERL, Reiner. Industrie 4.0-advanced engineering of smart products and smart production. Em: 19TH INTERNATIONAL SEMINAR ON HIGH TECHNOLOGY, 2014, Piracicaba, São Paulo, Brasil. Anais[…], Technological Innovations in the Product Development, 2014

BARBOSA, Filipe et al. Reinventing construction: A route to higher productivity. McKinsey Global Institute, 2017. Disponível em: <https://www.mckinsey.com/businessfunctions/operations/our-insights/reinventing-construction-through-a-productivity-revolution>. Acesso em: 18 out. 2022.

BAÚ, Gabriela. Construções modulares: Mapeamento do processo executivo de edificações em chassi de aço. 2021. TCC (graduação) - Universidade Federal de Santa Catarina, Centro Tecnológico, Engenharia Civil, Florianópolis, Brasil, 2021. Disponível em: <https://repositorio.ufsc.br/handle/123456789/223394>. Acesso em: 26 set. 2022.

BEHZADAN, Amir H.; KAMAT, Vineet R. Integrated information modeling and visual simulation of engineering operations using dynamic augmented reality scene graphs. Journal of Information Technology in Construction (ITcon), v. 16, n. 17, p. 259-278, 2011. ISSN 1874-4753.

BERTRAM, N. et al. Modular construction: From projects to products. McKinsey & Company: Capital Projects & Infrastructure, 2019. Disponível em: <https://www.mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/modular-construction-from-projects-to-products>. Acesso em: 8 jun. 2022.

BETIATTO, Pâmela. Perfil de inovação dos serviços ofertados por Construtechs brasileiras. 2021. TCC (graduação) - Universidade Federal de Santa Catarina, Centro Tecnológico, Engenharia Civil, Florianopolis, Brasil, 2021. Disponível em: https://repositorio.ufsc.br/handle/123456789/223397. Acesso em: 16 nov. 2022.

BRANDÍN, Roberto; ABRISHAMI, Sepehr. Information traceability platforms for asset data lifecycle: blockchain-based technologies. Smart and Sustainable Built Environment, v. 10, n. 3, p. 364-386, 2021.

CARDOSO, Marcelo de Oliveira. Indústria 4.0: a quarta revolução industrial. 2016. 43 f. Trabalho de Conclusão de Curso (Especialização em Automação Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2016.

CAVALCANTI, Vladyr Yuri Soares de Lima et al. Indústria 4.0: desafios e perspectivas na construção civil. Revista Campo do Saber, v. 4, n. 4, 2018.

CRAVEIROA, Flávio et al. Additive manufacturing as an enabling technology for digital construction: A perspective on Construction 4.0. Automation in Construction. Dev, v. 4, n. 6, 2019.

DA SILVA, Alice Duarte; SIMÃO, A. dos S.; MENEZES, CAG. Impactos da Indústria 4.0 na Construção Civil brasileira. Em: SIMPÓSIO DE EXCELÊNCIA EM GESTÃO E TECNOLOGIA, v. 15, 2018. Anais [...]. Disponível em: <https://www.aedb.br/seget/arquivos/artigos18/18726200.pdf>. Acesso em: 30 jan. 2023.

DOMDOUZIS, Konstantinos; KUMAR, Bimal; ANUMBA, Chimay. Radio-Frequency Identification (RFID) applications: A brief introduction. Advanced Engineering Informatics, v. 21, n. 4, p. 350-355, 2007.Disponivel em: <https://www.sciencedirect.com/science/article/abs/pii/S1474034606000498>. Acesso em 4 jan. 2023.

DING, Kai et al. Smart steel bridge construction enabled by BIM and Internet of Things in industry 4.0: A framework. Em: 15TH INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL (ICNSC), 2018. Anais [...]. p. 1-5. IEEE, 2018.

DU, Jing et al. Zero latency: Real-time synchronization of BIM data in virtual reality for collaborative decision-making. Automation in Construction, v. 85, p. 51–64, 2018.

FAROOQ, M. Umar et al. A review on internet of things (IoT). International journal of computer applications, v. 113, n. 1, p. 1-7, 2015.

FERDOUS, Wahid et al. New advancements, challenges and opportunities of multi-storey modular buildings–A state-of-the-art review. Engineering Structures, v. 183, p. 883-893, 2019.

FOLADOR, Beatriz Martins. Potenciais aplicações de tecnologias da Construção 4.0 em sistemas construtivos modulares em estrutura de aço. 2022. TCC (graduação) - Universidade Federal de Santa Catarina, Centro Tecnológico, Engenharia Civil, Florianópolis, Brasil, 2022. Disponível em: <https://repositorio.ufsc.br/bitstream/handle/123456789/240252/TCC_BeatrizMFolador.pdf?sequence=1&isAllowed=y>. Acesso em: 6 jan. 2023.

GARCIA, Anderson et al. Aplicação de gêmeos digitais na indústria da construção: estado da arte. Em: CONGRESSO PORTUGUÊS DE BUILDING INFORMATION MODELLING - PTBIM 2022, Anais [...]. Guimarães: Universidade do Minho, 2022. Disponível em: <https://doi.org/10.21814/uminho.ed.32.44>. Acesso em: 23 mar. 2023.

GIBB, Alistair G. F. Off-site Fabrication: Prefabrication, Pre-assembly and Modularisation. John Wiley & Sons, 1999.

GOMES, D. dos S. Inteligência Artificial: conceitos e aplicações. Olhar Científico Revista de Publicações da FAAr. v1, n. 2, p. 234-246, 2010.

GOSLING, Jonathan et al. Defining and Categorizing Modules in Building Projects: An International Perspective. Journal of Construction Engineering and Management, v. 142, n. 11, p. 04016062, 2016.

HAMLEDARI, Hesam; FISCHER, Martin. Construction payment automation using blockchain-enabled smart contracts and robotic reality capture technologies. Automation in Construction, v. 132, p. 103926, 2021.

HAYAT, Samira; YANMAZ, Evşen; MUZAFFAR, Raheeb. Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint. IEEE Communications Surveys & Tutorials, v. 18, n. 4, p. 2624-2661, 2016.

IET, The Institution of Engineering and Technology, Digital Engineering and Project Controls in the Construction Industry, 2012 [Online]. Available: < https://www.theiet.org/media/1217/laing-case.pdf >. Acesso em: 20 Nov 2022.

JASELSKIS, Edward J.; EL-MISALAMI, Tarek. Implementing radio frequency identification in the construction process. Journal of construction engineering and management, v. 129, n. 6, p. 680-688, 2003.

JIA, Xiaolin et al. RFID technology and its applications in Internet of Things (IoT). EM: 2ND INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS, COMMUNICATIONS AND NETWORKS (CECNet), 2012. Anais [...]. IEEE, 2012. p. 1282-1285.

KAMALI, Mohammad; HEWAGE, Kasun. Life cycle performance of modular buildings: A critical review. Renewable and sustainable energy reviews, v. 62, p. 1171-1183, 2016.

KAMALI, Mohammad; HEWAGE, Kasun; MILANI, Abbas S. Life cycle sustainability performance assessment framework for residential modular buildings: Aggregated sustainability indices. Building and Environment, v. 138, p. 21-41, 2018.

KHAJAVI, Siavash H. et al. Digital twin: vision, benefits, boundaries, and creation for buildings. IEEE access, v. 7, p. 147406-147419, 9 out. 2019. ISSN: 2169-3536.

KINI, Damodara U. Materials management: The key to successful project management. Journal of management in engineering, v. 15, n. 1, p. 30-34, 1999.

KOCHOVSKI, Petar; STANKOVSKI, Vlado. Supporting smart construction with dependable edge computing infrastructures and applications. Automation in Construction, v. 85, p. 182-192, 2018.

KOLBERG, Dennis; ZÜHLKE, Detlef. Lean automation enabled by industry 4.0 technologies. IFAC-PapersOnLine, v. 48, n. 3, p. 1870-1875, 2015.

LOPES, Isabelle Bomtempo. Análise Da Transformação Digital Na Indústria Da Construção Civil. Projeto de Conclusão de Curso II. Universidade Federal Fluminense Escola de Engenharia Departamento de Engenharia Civil, Niterói, Brasil, 2022. Disponível em: <https://tec.uff.br/wp-content/uploads/sites/719/2022/08/PCC2-Isabelle-Bomtempo-Vers%C3%A3o-Final.pdf>. Acesso em: 8 dez. 2022.

LU, Yujie et al. Building Information Modeling (BIM) for green buildings: A critical review and future directions. Automation in Construction, v. 83, p. 134-148, 2017.

MIGNACCA, Benito et al. We Never Built Small Modular Reactors (SMRs), but What Do We Know About Modularization in Construction?. Em: 26TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, 2018. London, UK Anais [...]. ASME - The American Society of Mechanical Engineers, 2018. p. V001T13A012. Disponível em: http://dx.doi.org/10.1115/ICONE26-81604. Acesso em: 18 dez. 2022

NEELAMKAVIL, Joseph. Automation in the prefab and modular construction industry. Em: 26TH SYMPOSIUM ON CONSTRUCTION ROBOTICS ISARC. 2009, Austin, Texas, EUA. Anais [...]. p. 229–306, 2009.

NETO, ALBERTO; LIMA, RENATO. Roteirização de veículos de uma rede atacadista com o auxílio de Sistemas de Informações Geográficas (SIG). Revista Pesquisa e Desenvolvimento Engenharia de Produção, n. 5, p. 18-39, 2006.

NOWOTARSKI, Piotr; PASLAWSKI, Jerzy. Industry 4.0 Concept Introduction into Construction SMEs. Em: IOP CONFERENCE SERIES: MATERIALS SCIENCE AND ENGINEERING, 2017. Anais [...]. v. 245, p. 052043, 2017.

OESTERREICH, Thuy Duong; TEUTEBERG, Frank. Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. Computers in Industry, v. 83, p. 121–139, 2016.

OSUNSANMI, Temidayo Oluwasola et al. Appraisal of stakeholders’ willingness to adopt construction 4.0 technologies for construction projects. Built Environment Project and Asset Management, v. 10, n. 4, p. 547–565, 2020.

OTI-SARPONG, Kwadwo et al. Transforming the construction sector: an institutional complexity perspective. Construction Innovation, v. 22, n. 2, p. 361–387, 2021.

PASCHOU, Theoni et al. Towards Service 4.0: a new framework and research priorities. Procedia Cirp, v. 73, p. 148-154, 2018.

QI, Han; GANI, Abdullah. Research on mobile cloud computing: Review, trend and perspectives. Em: 2012 SECOND INTERNATIONAL CONFERENCE ON DIGITAL INFORMATION AND COMMUNICATION TECHNOLOGY AND IT’S APPLICATIONS (DICTAP), 2012, Bangkok, Tailândia, p. 195–202. Anais [...]. IEEE, 2012.

ROSA, Roberto. Geotecnologias na geografia aplicada. Revista do Departamento de Geografia, v. 16, p. 81-90, 2005.

ROUT, Amruta; DEEPAK, B. B. V. L.; BISWAL, B. B. Advances in weld seam tracking techniques for robotic welding: A review. Robotics and Computer-Integrated Manufacturing, v. 56, p. 12–37, 2019.

RÜßMANN, Michael et al. Industry 4.0: The future of productivity and growth in manufacturing industries. Boston consulting group, v. 9, n. 1, p. 54-89, 2015.

SACKS, Rafael; PERLMAN, Amotz; BARAK, Ronen. Construction safety training using immersive virtual reality. Construction Management and Economics, v. 31, n. 9, p. 1005-1017, 2013.

SAN, Kiu Mee; CHOY, Chia Fah; FUNG, Wong Phui. The potentials and impacts of blockchain technology in construction industry: A literature review. IOP Science. 2019.

SANTOS, Rafael Souza. Revisão de Literatura em Inovações Tecnológicas da Indústria da Construção. Boletim do Gerenciamento, v. 19, n. 19, p. 1–11, 2020.

SARDROUD, Javad Majrouhi. Influence of RFID technology on automated management of construction materials and components. Scientia Iranica, v. 19, n. 3, p. 381-392, 2012.

SARDROUD, Javad Majrouhi; LIMBACHIY, Mukesh. Towards Linking Islands of Information Within Construction Projects Utilizing RF Technologies. Em: ELECTRICAL ENGINEERING AND APPLIED COMPUTING. Springer, Dordrecht, 2011. Anais [...]. p. 197-207. E-book. Disponível em: https://doi.org/10.1007/978-94-007-1192-1_17. Acesso em: 7 fev. 2023.

SAWHNEY, Anil et al. A proposed framework for Construction 4.0 based on a review of literature. Em: ASSOCIATED SCHOOLS OF CONSTRUCTION PROCEEDINGS OF THE 56TH ANNUAL INTERNATIONAL CONFERENCE, 2020. EPiC Series in Built Environment. Anais [...]. EasyChair, 2020. p. 301–309. Disponível em: https://easychair.org/publications/paper/VXLK. Acesso em: 28 jan. 2023.

SHEN, Hongyuan et al. Real-Time Seam Tracking Technology of Welding Robot with Visual Sensing. Journal of Intelligent & Robotic Systems, v. 59, n. 3, p. 283–298, 2010.

STATSENKO, Larissa et al. Construction 4.0 technologies and applications: A systematic literature review of trends and potential areas for development. Construction Innovation, n. ahead-of-print, 2022.

TRAPPEY, Amy JC; LU, Tung-Hung; FU, Li-Dien. Development of an intelligent agent system for collaborative mold production with RFID technology. Robotics and Computer-Integrated Manufacturing, v. 25, n. 1, p. 42-56, 2009.

WANG, Mudan et al. A systematic review of digital technology adoption in off-site construction: Current status and future direction towards industry 4.0. Buildings, v. 10, n. 11, p. 204, 2020.

ZHANG, Chengyi; ARDITI, David. Automated progress control using laser scanning technology. Automation in construction, v. 36, p. 108-116, 2013.

ZHONG, Ray Y. et al. RFID-enabled real-time manufacturing execution system for mass-customization production. Robotics and Computer-Integrated Manufacturing, v. 29, n. 2, p. 283-292, 2013.

Downloads

Publicado

2023-11-05

Como Citar

FOLADOR, Beatriz Martins; OVIEDO-HAITO, Ricardo Juan José. Potenciais aplicações das tecnologias da indústria 4.0 na construção modular. In: SIMPÓSIO BRASILEIRO DE GESTÃO E ECONOMIA DA CONSTRUÇÃO, 13., 2023. Anais [...]. Porto Alegre: ANTAC, 2023. p. 1–11. DOI: 10.46421/sibragec.v13i00.2645. Disponível em: https://eventos.antac.org.br/index.php/sibragec/article/view/2645. Acesso em: 22 dez. 2024.

Edição

Seção

Indústria 4.0 e 5.0 na construção

Artigos Semelhantes

1 2 3 4 5 6 7 8 9 10 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.