Using Data Augmentation for automated recognition of façade anomalies

Authors

DOI:

https://doi.org/10.46421/entac.v20i1.5843

Keywords:

Automated inspection., Visual assets., Unbalanced base., Machine learning

Abstract

In recent years, there has been an increase in the use of Artificial Intelligence (AI) for automated image analysis. However, there are some limitations regarding small data sets. Aiming to minimize this limitation, this study evaluates using Data Augmentation (DA) techniques to create new automated image recognition models. The research strategy used was an experimental simulation based on (i) refinement of the database of images of concrete facades, (ii) development of a DA code to expand the database, (iii) training and testing images using web platforms with pre-trained networks; and (iv) analysis of results through performance indicators. The results indicated that the “Model with contrast method,” using ResNet and AlexNet algorithms, achieved 67.3% precision and 94.6% Recall.

 

Author Biographies

Walisson Santos Oliveira, Federal University of Bahia

Computer Engineering student at the Federal University of Bahia.

Alisson Souza Silva, Federal University of Bahia

PhD student in the Postgraduate Program in Civil Engineering (PPEC) at the Federal University of Bahia.

Roseneia Rodrigues Santos de Melo, Federal University of Bahia

Postdoctoral researcher in Civil Engineering at the Federal University of Bahia. 

Pedro Afonso Vieira Fernandes Braga, Federal University of Bahia

Computer Engineering student at the Federal University of Bahia.

Dayana Bastos Costa, Federal University of Bahia

Post-doctorate in Civil Engineering and Associate Professor III of the Department of Construction and Structures of the Polytechnic School of the Federal University of Bahia

References

SILVA, A.S.; COSTA, D. B. Análise do uso de tecnologias digitais para identificação automatizada de patologias em construções.

ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO, v. 19, p. 1-14, 2022.

STOCHINO, F.; FADDA, M. L.; MISTRETTA, F. Low cost condition assessment method for existing RC bridges. Engineering Failure

Analysis, v. 86, p. 56-71, 2018.

BARBOSA, R. L. de B.. Sistema de Deep Learning para detecção de trincas em concreto. [s.l.] Universidade de Pernambuco, 2023.

ALI, S. B. et al. Wall crack detection using transfer learning-based CNN models. In: 2020 IEEE 17th India Council International

Conference (INDICON). IEEE, 2020. p. 1-7.

ISLAM, M. M. et al. CNN based on transfer learning models using data augmentation and transformation for detection of concrete

crack. Algorithms, v. 15, n. 8, p. 287, 2022.

KIM, B. et al. Surface crack detection using deep learning with shallow CNN architecture for enhanced computation. Neural

Computing and Applications, v. 33, p. 9289-9305, 2021.

KAUFMAN, D. A inteligência artificial irá suplantar a inteligência humana?. ESTAÇÃO DAS LETRAS E CORES EDI, 2019.

SHORTEN, C.; KHOSHGOFTAAR, T. M.; FURHT, B. Text data augmentation for deep learning. Journal of big Data, v. 8, p. 1-34, 2021.

SILVA, A. S.; MELO, Roseneia Rodrigues Santos; COSTA, Dayana Bastos. Automated facade inspection: Application and challenge in

using Artificial Intelligence for construction defect recognition. In: XX International Conference on Building Pathology and

Constructions Repair (CINPAR), p. XXXX, 2024.

OTTONI, A. L. C. et al. Métodos para recomendação de hiperparâmetros de aprendizado de máquina na classificação de imagens

da construção civil. 2022.

OTTONI, A. L. C.; NOVO, M. S. A deep learning approach to vegetation images recognition in buildings: a hyperparameter tuning

case study. IEEE Latin America Transactions, v. 19, n. 12, p. 2062-2070, 2021.

GUO, J. et al. Façade defects classification from imbalanced dataset using meta learning‐based convolutional neural network.

Computer‐Aided Civil and Infrastructure Engineering, v. 35, n. 12, p. 1403-1418, 2020.

CHENG, J.C. AND WANG, M. Automated detection of sewer pipe defects in closed-circuit television images using deep learning

techniques. Automation in Construction, 95, p.155-171, 2018.

LEE, K., LEE, S., & KIM, H. Y. (2022). Bounding-box object augmentation with random transformations for automated defect

detection in residential building façades. Automation in Construction, 135, 104138. https://doi.org/10.1016/j.autcon.2022.104138

MAHARANA, K.; MONDAL, Surajit; NEMADE, Bhushankumar. A review: Data pre-processing and data augmentation techniques.

Global Transitions Proceedings, v. 3, n. 1, p. 91-99, 2022.

OTTONI, A.L.C., DE AMORIM, R.M., NOVO, M.S. et al. Tuning of data augmentation hyperparameters in deep learning to building

construction image classification with small datasets. Int. J. Mach. Learn. & Cyber. 14, 171–186 (2022). https://doi.org/10.1007/

s13042-022-01555-1.

KIM, D.; CHOE, S.; ZHANG, S. Recognition of adherent polychaetes on oysters and scallops using Microsoft Azure Custom Vision.

Electronic Research Archive, v. 31, n. 3, p. 1691-1709, 2023.

LIAKHOVICH, Olga; MBEMBA, Claudius. Food classification with custom vision service. 2017.

DANIEL, E. R. Wildfire smoke detection with computer vision. arXiv preprint arXiv:2301.05070, 2023.

SHANDILYA, Shishir Kumar et al. YOLO-based segmented dataset for drone vs. bird detection for deep and machine learning

algorithms. Data in Brief, v. 50, p. 109355, 2023.

SILVA, A. S. GONZAGA, L.G., MELO, R.R.S, COSTA, D.B. Modelo de aprendizado de máquina para inspeção automatizada de

fachadas de paredes de concreto. SIMPÓSIO BRASILEIRO DE GESTÃO E ECONOMIA DA CONSTRUÇÃO, v. 13, p. 1-9, 2023.

TAYLOR, L.; NITSCHKE, G. Improving deep learning with generic data augmentation. In: 2018 IEEE symposium series on

computational intelligence (SSCI). IEEE, 2018. p. 1542-1547.

MEDEIROS, L. C. Aplicação de Aprendizado Profundo Na Classificação de Imagens de Patologias Da Construção Civil: Análise de

Aumento de Dados Para Bancos de Dados Desbalanceados. 2023. Tese (Bacharelado em Ciências exatas e tecnológicas) -

Universidade Federal do Recôncavo da Bahia, Cruz das Almas, 2023.

Published

2024-10-07

How to Cite

OLIVEIRA, Walisson Santos; SILVA, Alisson Souza; MELO, Roseneia Rodrigues Santos de; BRAGA, Pedro Afonso Vieira Fernandes; COSTA, Dayana Bastos. Using Data Augmentation for automated recognition of façade anomalies. In: NATIONAL MEETING OF BUILT ENVIRONMENT TECHNOLOGY, 20., 2024. Anais [...]. Porto Alegre: ANTAC, 2024. p. 1–13. DOI: 10.46421/entac.v20i1.5843. Disponível em: https://eventos.antac.org.br/index.php/entac/article/view/5843. Acesso em: 23 nov. 2024.

Issue

Section

Tecnologia da Informação e Comunicação

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 13 14 15 16 17 18 19 20 21 22 > >> 

You may also start an advanced similarity search for this article.