Spatial and temporal validation of urban microclimate simulations

Authors

DOI:

https://doi.org/10.46421/entac.v20i1.5952

Keywords:

Outdoor thermal comfort, Dynamic measurements, CFD, Validation

Abstract

Understanding the phenomenon of Urban Heat Islands is crucial for the development of effective adaptation policies in urban areas. This study addresses the need for reliable simulation models to analyze thermal comfort in open spaces. The objective is to contribute to the temporal and spatial validation of urban microclimate CFD models. To achieve this, monitoring was conducted with a fixed reference station and a Low-Cost Portable Environmental Monitoring System (PLEMS) along walking routes in Curitiba during summer days (1); a CFD model was developed and simulated in the ENVI-met software (2); and statistical validation metrics of temporal and spatial model validation were analyzed (3). The results indicate that, although temporal validation shows high agreement with low magnitudes of error between simulated data and data measured by the fixed reference station, spatial validation demonstrates low accuracy of the CFD model in predicting thermal comfort in urban canyons. There are noticeable differences between intra-urban transect data and simulated data, requiring model calibration.

Author Biographies

Bianca Milani de Quadros, Federal University of Santa Catarina

Master in Architecture and Urbanismo from Federal University of Santa Catarina. PhD student in Architecture and Urbanism from Federal University of Santa Catarina (Florianópolis - SC, Brazil).

Ilaria Pigliautile, University of Perugia

PhD in Energy and Sustainable Development from University of Perugia. Assistant Professor at University of Perugia (Perugia - PG, Italy)

Anna Laura Pisello, University of Perugia

Post-doc in Energy and Sustainable Development from University of Perugia. Full Professor at University of Perugia (Perugia - PG, Italy).

Eduardo Leite Krüger, Technological University Federal do Paraná

PhD in Civil Engineering from Gottfried Wilhelm Leibniz Universität Hannover. Full professor at
Federal Technological University of Paraná (Curitiba - PR, Brazil).

Martin Gabriel Ordenes Mizgier, Federal University of Santa Catarina

PhD in Civil Engineering from Federal University of Santa Catarina. Full professor at Federal University of Santa Catarina (Florianópolis - SC, Brazil).

Walter Ihlenfeld, Federal Technological University of Paraná

Graduation in Civil Engineering from Federal Technological University of Paraná. Master student in Civil Engineering from Federal Technological University of Paraná (Curitiba - PR, Brazil).

 

Solange Maria Leder, Federal University of Paraíba

Post-doctorate in Architecture and Urbanism from the National Research Council Canada. Professor at the Federal University of Paraíba (João Pessoa - PB, Brazil).

References

Toparlar, Y.; Blocken, B.; Maiheu, B.; Van Heijst, G. J. F. A review on the CFD analysis of urban microclimate, Renewable and Sustainable Energy Reviews, vol. 80, p. 1613–1640, 2017, doi: 10.1016/j.rser.2017.05.248.

Chatzidimitriou, A.; Yannas, S.. Microclimate development in open urban spaces: The influence of form and materials, Energy Build, vol. 108, p. 156–174, 2015, doi: 10.1016/j.enbuild.2015.08.048.

De Abreu-Harbich, L. V.; Labaki, L. C.; Matzarakis, A. Effect of tree planting design and tree species on human thermal comfort in the tropics, Landsc Urban Plan, vol. 138, p. 99–109, 2015, doi: 10.1016/j.landurbplan.2015.02.008

Nasrollahi, N.; Ghosouri, A.; Khodakarami, J.; Taleghani, M. Heat-mitigation strategies to improve pedestrian thermal comfort in urban environments: A review, Sustainability (Switzerland), vol. 12, no 23, p. 1–23, 2020, doi: 10.3390/su122310000.

Park, C. Y. et al., A multilayer mean radiant temperature model for pedestrians in a street canyon with trees, Build Environ, vol. 141, p. 298–309, ago. 2018, doi: 10.1016/j.buildenv.2018.05.058.

Salata, F.; Golasi, I.; De Lieto Vollaro, R.; De Lieto Vollaro, A. Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data, Sustain Cities Soc, vol. 26, p. 318–343, 2016, doi: 10.1016/j.scs.2016.07.005.

AIAA, American Institute of Aeronautics and Astronautics. AIAA G-077-1998 Guide for the Verification and Validation of Computational Fluid Dynamics Simulations. American Institute of Aeronautics and Astronautics, Inc., 2002. doi: 10.2514/4.472855.001.

Fabbri, K.; Costanzo, V. Drone-assisted infrared thermography for calibration of outdoor microclimate simulation models, Sustain Cities Soc, vol. 52, p. 101855, 2020, doi: 10.1016/j.scs.2019.101855 Get rights and content.

Krayenhoff, E.S. et al., Cooling hot cities: a systematic and critical review of the numerical modelling literature, Environmental Research Letters, vol. 16, no 5, p. 053007, 2021, doi: 10.1088/1748-9326/abdcf1.

Kousis, I.; Manni, M.; Pisello, A. L. Environmental mobile monitoring of urban microclimates: A review, Renewable and Sustainable Energy Reviews, vol. 169, p. 112847, 2022, doi: 10.1016/j.rser.2022.112847.

Crank, P. J.; Middel, A.; Wagner, M.; Hoots, D.; Smith, M.; Brazel, A. Validation of seasonal mean radiant temperature simulations in hot arid urban climates, Science of the Total Environment, vol. 749, p. 141392, 2020, doi: 10.1016/j.scitotenv.2020.141392.

HAM, J. Radiation Shield For Weather Station Temperature/Humidity. 2015. Disponível em: https://www.thingiverse.com/thing:1067700. Acesso em: 12 mar. 2024.

Ihlenfeld, W.; Krüger, E. Leder, S. M.; De Quadros, B. M; Lima, L. C. Prototipação de sistema portátil de monitoramento ambiental de baixo custo para estudos de conforto ambiental em espaços abertos, ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO, vol. 17, p. 1–10, 2023.

LABEEE - Laboratório de Eficiência Energética em Edificações. Arquivos climático TRY. Acessado: 23 de fevereiro de 2024. [Online]. Disponível em: http://www.labeee.ufsc.br/downloads

INMET - Instituto Nacional de Meteorologia. Mapas estações meteorológicas. Acessado: 16 de janeiro de 2024. [Online]. Disponível em: https://www.mapas.inmet.gov.br

Bruse, M.; Fleer, H. Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model”, Environmental modelling & software, vol. 13, no 3–4, p. 373–384, 1998, doi: 10.1016/S1364-8152(98)00042-5.

Lalic, B.; Mihailovic, D. T. An empirical relation describing leaf-area density inside the forest for environmental modeling, J Appl Meteorol Climatol, vol. 43, no 4, p. 641–645, 2004, doi: 10.1175/1520-0450(2004)043<0641:AERDLD>2.0.CO;2.

IPPUC - Instituto de Pesquisa e Planejamento Urbano de Curitiba. Curitiba em dados. Acessado: 31 de janeiro de 2024. [Online]. Disponível em: http://www.ippuc.org.br/bancodedados/curitibaemdados/curitiba_em_dados_pesquisa.htm

University of Wyoming. Radiosonde. Acessado: 2 de fevereiro de 2024. [Online]. Disponível em: https://weather.uwyo.edu/upperair/sounding.html

Willmott, C. J. Some comments on the evaluation of model performance, Bull Am Meteorol Soc, vol. 63, no 11, p. 1309–1313, 1982.

Elraouf, R. A.; Elmokadem, A.; Megahed, N.; Eleinen, O. A.; Eltarabily, S. Evaluating urban outdoor thermal comfort: A validation of ENVI-met simulation through field measurement, J Build Perform Simul, vol. 15, no 2, p. 268–286, 2022, doi: 10.1080/19401493.2022.2046165.

Lam, C. K. C.; Lee, H.; Yang, S. R.; Park, S. A review on the significance and perspective of the numerical simulations of outdoor thermal environment, Sustain Cities Soc, vol. 71, p. 102971, 2021, doi: 10.1016/j.scs.2021.102971.

Tsoka, S.; Tsikaloudaki, A.; Theodosiou, T. Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–A review, Sustain Cities Soc, vol. 43, p. 55–76, 2018, doi: https://doi.org/10.1016/j.scs.2018.08.009.

Published

2024-10-07

How to Cite

QUADROS, Bianca Milani de; PIGLIAUTILE, Ilaria; PISELLO, Anna Laura; KRÜGER, Eduardo Leite; MIZGIER, Martin Gabriel Ordenes; IHLENFELD, Walter; LEDER, Solange Maria. Spatial and temporal validation of urban microclimate simulations. In: NATIONAL MEETING OF BUILT ENVIRONMENT TECHNOLOGY, 20., 2024. Anais [...]. Porto Alegre: ANTAC, 2024. p. 1–15. DOI: 10.46421/entac.v20i1.5952. Disponível em: https://eventos.antac.org.br/index.php/entac/article/view/5952. Acesso em: 22 dec. 2024.

Issue

Section

Conforto Ambiental e Eficiência Energética

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.