Spatial and temporal validation of urban microclimate simulations
DOI:
https://doi.org/10.46421/entac.v20i1.5952Keywords:
Outdoor thermal comfort, Dynamic measurements, CFD, ValidationAbstract
Understanding the phenomenon of Urban Heat Islands is crucial for the development of effective adaptation policies in urban areas. This study addresses the need for reliable simulation models to analyze thermal comfort in open spaces. The objective is to contribute to the temporal and spatial validation of urban microclimate CFD models. To achieve this, monitoring was conducted with a fixed reference station and a Low-Cost Portable Environmental Monitoring System (PLEMS) along walking routes in Curitiba during summer days (1); a CFD model was developed and simulated in the ENVI-met software (2); and statistical validation metrics of temporal and spatial model validation were analyzed (3). The results indicate that, although temporal validation shows high agreement with low magnitudes of error between simulated data and data measured by the fixed reference station, spatial validation demonstrates low accuracy of the CFD model in predicting thermal comfort in urban canyons. There are noticeable differences between intra-urban transect data and simulated data, requiring model calibration.References
Toparlar, Y.; Blocken, B.; Maiheu, B.; Van Heijst, G. J. F. A review on the CFD analysis of urban microclimate, Renewable and Sustainable Energy Reviews, vol. 80, p. 1613–1640, 2017, doi: 10.1016/j.rser.2017.05.248.
Chatzidimitriou, A.; Yannas, S.. Microclimate development in open urban spaces: The influence of form and materials, Energy Build, vol. 108, p. 156–174, 2015, doi: 10.1016/j.enbuild.2015.08.048.
De Abreu-Harbich, L. V.; Labaki, L. C.; Matzarakis, A. Effect of tree planting design and tree species on human thermal comfort in the tropics, Landsc Urban Plan, vol. 138, p. 99–109, 2015, doi: 10.1016/j.landurbplan.2015.02.008
Nasrollahi, N.; Ghosouri, A.; Khodakarami, J.; Taleghani, M. Heat-mitigation strategies to improve pedestrian thermal comfort in urban environments: A review, Sustainability (Switzerland), vol. 12, no 23, p. 1–23, 2020, doi: 10.3390/su122310000.
Park, C. Y. et al., A multilayer mean radiant temperature model for pedestrians in a street canyon with trees, Build Environ, vol. 141, p. 298–309, ago. 2018, doi: 10.1016/j.buildenv.2018.05.058.
Salata, F.; Golasi, I.; De Lieto Vollaro, R.; De Lieto Vollaro, A. Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data, Sustain Cities Soc, vol. 26, p. 318–343, 2016, doi: 10.1016/j.scs.2016.07.005.
AIAA, American Institute of Aeronautics and Astronautics. AIAA G-077-1998 Guide for the Verification and Validation of Computational Fluid Dynamics Simulations. American Institute of Aeronautics and Astronautics, Inc., 2002. doi: 10.2514/4.472855.001.
Fabbri, K.; Costanzo, V. Drone-assisted infrared thermography for calibration of outdoor microclimate simulation models, Sustain Cities Soc, vol. 52, p. 101855, 2020, doi: 10.1016/j.scs.2019.101855 Get rights and content.
Krayenhoff, E.S. et al., Cooling hot cities: a systematic and critical review of the numerical modelling literature, Environmental Research Letters, vol. 16, no 5, p. 053007, 2021, doi: 10.1088/1748-9326/abdcf1.
Kousis, I.; Manni, M.; Pisello, A. L. Environmental mobile monitoring of urban microclimates: A review, Renewable and Sustainable Energy Reviews, vol. 169, p. 112847, 2022, doi: 10.1016/j.rser.2022.112847.
Crank, P. J.; Middel, A.; Wagner, M.; Hoots, D.; Smith, M.; Brazel, A. Validation of seasonal mean radiant temperature simulations in hot arid urban climates, Science of the Total Environment, vol. 749, p. 141392, 2020, doi: 10.1016/j.scitotenv.2020.141392.
HAM, J. Radiation Shield For Weather Station Temperature/Humidity. 2015. Disponível em: https://www.thingiverse.com/thing:1067700. Acesso em: 12 mar. 2024.
Ihlenfeld, W.; Krüger, E. Leder, S. M.; De Quadros, B. M; Lima, L. C. Prototipação de sistema portátil de monitoramento ambiental de baixo custo para estudos de conforto ambiental em espaços abertos, ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO, vol. 17, p. 1–10, 2023.
LABEEE - Laboratório de Eficiência Energética em Edificações. Arquivos climático TRY. Acessado: 23 de fevereiro de 2024. [Online]. Disponível em: http://www.labeee.ufsc.br/downloads
INMET - Instituto Nacional de Meteorologia. Mapas estações meteorológicas. Acessado: 16 de janeiro de 2024. [Online]. Disponível em: https://www.mapas.inmet.gov.br
Bruse, M.; Fleer, H. Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model”, Environmental modelling & software, vol. 13, no 3–4, p. 373–384, 1998, doi: 10.1016/S1364-8152(98)00042-5.
Lalic, B.; Mihailovic, D. T. An empirical relation describing leaf-area density inside the forest for environmental modeling, J Appl Meteorol Climatol, vol. 43, no 4, p. 641–645, 2004, doi: 10.1175/1520-0450(2004)043<0641:AERDLD>2.0.CO;2.
IPPUC - Instituto de Pesquisa e Planejamento Urbano de Curitiba. Curitiba em dados. Acessado: 31 de janeiro de 2024. [Online]. Disponível em: http://www.ippuc.org.br/bancodedados/curitibaemdados/curitiba_em_dados_pesquisa.htm
University of Wyoming. Radiosonde. Acessado: 2 de fevereiro de 2024. [Online]. Disponível em: https://weather.uwyo.edu/upperair/sounding.html
Willmott, C. J. Some comments on the evaluation of model performance, Bull Am Meteorol Soc, vol. 63, no 11, p. 1309–1313, 1982.
Elraouf, R. A.; Elmokadem, A.; Megahed, N.; Eleinen, O. A.; Eltarabily, S. Evaluating urban outdoor thermal comfort: A validation of ENVI-met simulation through field measurement, J Build Perform Simul, vol. 15, no 2, p. 268–286, 2022, doi: 10.1080/19401493.2022.2046165.
Lam, C. K. C.; Lee, H.; Yang, S. R.; Park, S. A review on the significance and perspective of the numerical simulations of outdoor thermal environment, Sustain Cities Soc, vol. 71, p. 102971, 2021, doi: 10.1016/j.scs.2021.102971.
Tsoka, S.; Tsikaloudaki, A.; Theodosiou, T. Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–A review, Sustain Cities Soc, vol. 43, p. 55–76, 2018, doi: https://doi.org/10.1016/j.scs.2018.08.009.