BIM and photogrammetry for visual progress monitoring in infrastructure projects
DOI:
https://doi.org/10.46421/entac.v20i1.6000Keywords:
Construction progress, BIM, Drone, Point cloud, Infrastructure projectsAbstract
The control and monitoring of the physical progress of construction works are essential to ensure compliance with production planning and efficient resource management. However, conventional practices involve manual methods, individual observations, and textual documentation, reducing the reliability of crucial information for managerial decision-making. To improve these aspects, this study explores the use of BIM and photogrammetry as suggested digital technologies to ensure more agile, reliable, and transparent monitoring of the physical progress of infrastructure projects. This article presents an exploratory case study of a highway project, discussing the difficulties and advances regarding the integration of point clouds and a 4D digital model for measuring project progress. As a result, a visual communication tool for progress is established, enabling the early identification of potential deviations from the schedule and providing greater accuracy in cost estimation through quantifiable data extracted from the model.
References
NAVON, R.; SHPATNITSKY, Y. A model for automated monitoring of road construction. Construction Management and Economics,
v. 23, n. 9, p. 941-951, 2005.
PATEL, T.; BAPAT, H.; PATEL, D.; VAN DER WALT, J. D. Identification of critical success factors (CSFs) of BIM software selection: A
combined approach of FCM and fuzzy DEMATEL. Buildings, v. 11, n. 7, p. 311, 2021.
TEIZER, J. Status quo and open challenges in vision-based sensing and tracking of temporary resources on infrastructure
construction sites. Advanced Engineering Informatics, v. 29, n. 2, p. 225-238, 2015.
SALEHI, S. A.; YITMEN, I. Modeling and analysis of the impact of BIM-based field data capturing technologies on automated
construction progress monitoring. International Journal of Civil Engineering, v. 16, n. 22, p. 1669-1685, 2018.
GOLPARVAR-FARD, M.; BOHN, J.; TEIZER, J.; SAVARESE, S., PEÑA-MORA, F. Evaluation of image-based modeling and laser scanning
accuracy for emerging automated performance monitoring techniques. Automation in Construction, v. 20, n. 8, p. 1143-1155, 2011.
LO, Y., ZHANG, C., YE, Z.; CUI, C. Monitoring Road base course construction progress by photogrammetry-based 3D reconstruction.
International Journal of Construction Management, v. 23, n. 12, p. 2087-2101, 2023.
ÁLVARES, J. S. Monitoramento visual do progresso de obras com uso de mapeamento 3D de canteiros por VANT e modelos BIM
D. 2019. 225 f. Dissertação (Mestrado em Engenharia Civil) —Universidade Federal da Bahia, Salvador, 2019.
KIELHAUSER, C.; RENTERIA MANZANO, R.; HOFFMAN, J.; ADEY, B. Automated construction progress and quality monitoring for
commercial buildings with unmanned aerial systems: An application study from Switzerland. Infrastructures, v. 5, n. 11, p. 98,
JACOB-LOYOLA, N.; MUÑOZ-LA RIVERA, F.; HERRERA, R. F.; ATENCIO, E. Unmanned aerial vehicles (UAVs) for physical progress
monitoring of construction. Sensors, v. 21, n. 12, p. 4227, 2021.
BARBOSA, A. Método para monitoramento do progresso e terminalidade de atividades internas e externas de obras utilizando
BIM, RPA e câmera 360º. 2022. 160 f. Dissertação (Mestrado em Engenharia Civil) —Universidade Federal da Bahia, Salvador, 2022.
CNT- Confederação Nacional do Transporte. Série Especial de Economia – Investimentos em Transporte -2024. Disponível em:
http://cnt.org.br/documento/5a2dcd55-efd3-4179-a362-c85f4d4672d3/. Acesso em: 20 abril 2024.
VICK, S.; BRILAKIS, I. Road design layer detection in point cloud data for construction progress monitoring. Journal of computing in
civil engineering, v. 32, n. 5, p. 04018029, 2018.
SIEBERT, S.; TEIZER, J. Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system.
Automation in construction, v. 41, p. 1-14, 2014.
JULGE, K.; ELLMANN, A.; KÖÖK, R. Unmanned aerial vehicle surveying for monitoring road construction earthworks. The baltic j
journal of road and bridge engineering, v. 14, n. 1, p. 1-17, 2019.
BIÇICI, S.; ZEYBEK, M. An approach for the automated extraction of road surface distress from a UAV-derived point cloud.
Automation in Construction, v. 122, p. 103475, 2021.
COSTA, R. P.; FERNANDES, L. L. de A.; MUTA, L. F.; ISATTO, L. E.; COSTA, D. B. Modelagem 3D de edificação gerada por
fotogrametria com uso de Veículos Aéreos Não Tripulados (VANT). Ambiente Construído, Porto Alegre, v. 24, e131377, jan./dez.