Physical flow of prefabricated concrete elements using aerial photogrammetry
DOI:
https://doi.org/10.46421/entac.v20i1.5913Keywords:
Prefabricated concrete. , Aerial photogrammetry., Drones., Mapoflowchart. , Lean Construction.Abstract
Optimizing process flows for assembling formwork and prefabricated concrete beam reinforcement is essential to maximize the benefits of this construction method, which is known for its ability to reduce costs, speed up execution, and increase product quality. However, inconsistency in the adoption of technologies and the representation of production site data can challenge the implementation of process improvement strategies, limiting the full realization of the benefits of the construction method. Drones associated with photogrammetry have emerged as a prominent technology for capturing and representing both the layout of the construction site and the prefabricated factory. Therefore, this article aims to investigate the use of orthophotos and map flowcharts to evaluate the flow and contribute by proposing improvements in the assembly processes of formwork and reinforcement of prefabricated concrete beams, using these tools to analyze physical flows. The research strategy adopted was the exploratory case study. The results emphasize that transport activities are responsible for the majority of waste. The activities of the new model proposed for the framing process showed a reduction from 33% to 22.2% in the quantity of transport activity and from 25% to 22.2% in inventory activity. As a contribution, this article demonstrates the effectiveness of integrating drone and photogrammetry technologies in optimizing assembly processes in precast concrete factories.
References
DELGADO, J. Robotics and automated systems in construction: Understanding industry-specific challenges for adoption. Journal of
Building Engineering, v. 26, p. 100868, 2019.
BURGOS, A.; COSTA, D. B. Assessment of Kanban Use on Construction Sites. In: Annual Conference of the International Group for
Lean Construction, 20., 2012, San Diego. Proceedings [...]. 2012.
KOSKELA, L. 1993. Lean production in construction. In: L.F. Alarcon, ed. Lean Construction. 1. ed. Rotterdam: A.A. Balkema, 1993. p.
-9.
PÉREZ, C. Proposta de um método para a identificação, mensuração e caracterização das perdas por transporte nos fluxos físicos
em canteiros de obras. Dissertação (Mestrado em Engenharia Civil) – Universidade Federal da Bahia, Salvador, 2015.
CARDOSO, F. Importância dos Estudos de Preparação e da Logística na Organização dos Sistemas de Produção de Edifícios:
Alguns Aprendizados a Partir da Experiência Francesa. In: Seminário Internacional Lean Construction – A Construção Sem Perdas,
, 1996, São Paulo. Anais [...]. São Paulo, 1996.
LIU, P.; CHEN, A.; HUANG, Y.; HAN, J.; LAI, J.; KANG, S.; SAI, M. A Review of Rotorcraft Unmanned Aerial Vehicle (UAV) Developments
and Applications in Civil Engineering. Smart Struct. Syst, v. 13, n. 6, p. 1065-1094, 2014.
PARK, H.; RACHMAWATI, T.; KIM, S. UAV-Based High-Rise Buildings Earthwork Monitoring—A Case Study. Sustainability, v. 14, n. 16,
p. 10179, 2022.
HAMLEDARI, H.; MCCABE, B.; DAVARI, S. Automated computer vision-based detection of components of under-construction indoor
partitions. Automation in Construction, v. 74, p. 78-94, 2017.
DAMELIO, R. The Basics of Process Mapping. Productivity Press, 2011.
SILVA, D. Aplicação do FMEA como suporte para melhoria de processos na construção civil: um estudo de caso. Trabalho de
conclusão de curso (Engenharia de Produção)- Universidade Federal de Campina Grande, Sumé, 2019.
LIKER, J. The Toyota Way: 14 Management Principles from the World's Greatest Manufacturer. 1. ed. New York: McGraw-Hill
Education, 2004.
VWY, T.; CM, T.; SX, Z.; WCY, N. Towards adoption of prefabrication in construction. Building and environment, v. 42, n. 10, p.
-3654, 2007.
XU, G. Cloud asset-enabled integrated IoT platform for lean prefabricated construction. Automation in Construction, v. 93, p.
-134, 2018.
PÉREZ, C.; FERNANDES, L.; COSTA, D. A literature review on 4D BIM for logistics operations and workspace management.
Proceedings, 24th Ann. Conf. of the Int’l. Group for Lean Construction, Boston, MA, USA, sect.8, 2016, pp. 53–62.
VIANA, C.; SOUZA, C.; PÉREZ, C.; COSTA, D. Análise dos fluxos físicos em canteiro de obra por meio do uso de simulações BIM 4D e
com base em algoritmos genéticos. In: SIMPÓSIO BRASILEIRO DE TECNOLOGIA DA INFORMAÇÃO E COMUNICAÇÃO NA
CONSTRUÇÃO, 1., 2017. Anais [...]. 2017.
WOLF, P.; DEWITT, B. Elements of Photogrammetry with Applications in GIS. 3. ed. New York: McGraw-Hill Education, 2000.
KRAUS, K. Photogrammetry: Volume 1. Fundamentals and Standard Processes. Dümmler, 1993.
KOTIKOV, J. GIS-modeling of multimodal complex road network and its traffic organization. Transportation Research Procedia, v.
, p. 340-346, 2017.
LI, Z.; ZHU, Q.; GOLD, C. Digital Terrain Modeling: Principles and Methodology. 1. ed. Boca Raton: CRC Press, 2005.
MIKHAIL, E.; BETHEL, J.; MCGLONE, J. Introduction to Modern Photogrammetry. 1. ed. New York: Wiley, 2001.
YIN, R. Case study research and applications. 6. ed. Thousand Oaks: Sage Publications, 2018.
CRUZ NETO, O.; MINAYO, M. Pesquisa social: teoria, método e criatividade. Petrópolis, RJ: Editora Vozes, 1999.
SACRAMENTO, I.; CAMPOS, V.; FERNANDES, V.; FERREIRA, E. Veículo aéreo não tripulado como suporte à gestão de fluxos físicos
em canteiros de obra. In: SIMPÓSIO BRASILEIRO DE GESTÃO E ECONOMIA DA CONSTRUÇÃO, 11., 2019, Brasília. Anais [...]. Brasília:
Editora da Universidade de Brasília, 2019. p. 1-10.