Manufatura aditiva como ferramenta didática para a formação de profissionais da AEC
DOI:
https://doi.org/10.46421/sbtic.v3i00.567Palavras-chave:
Manufatura aditiva, Ensino interdisciplinar, Impressão 3D, Aprendizado baseado em problemas, PBLResumo
O potencial disruptivo da Manufatura Aditiva (AM) somado com as novas necessidades educacionais da sociedade do século XXI demandam programas educacionais inovadores. Esta Revisão Sistemática da Literatura (RSL) objetivou encontrar abordagens de utilização da AM na educação para se traçar possíveis paralelos com Arquitetura, Engenharia e Construção (AEC), que ainda pouco se beneficia desta tecnologia. Os relatos apontam ganhos no processo de ensino-aprendizagem como: facilidade de entendimento de conceitos abstratos, estímulo para a construção do conhecimento centrado no aluno e a efetiva integração interdisciplinar. E conclui-se com um desenho dos elementos necessários para a proposição de um futuro modelo de colaboração na formação de profissionais da AEC.
Downloads
Referências
BAYAR, M. S.; AZIZ, Z. Rapid prototyping and its role in supporting architectural design process. Journal of Architectural Engineering, v. 24, n. 3, 2018.
BEKKE, D. A.; MERSHA, A. Y. Practical methodologies for the development of the students’ multidisciplinary engineering skills: A win-win cooperation for both universities and companies. In: INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MECHATRONICS, 19., 2018, Delft. Proceeding[...]. IEEE, 2018. p.117–120. DOI: https://doi.org/10.1109/REM.2018.8421804
BHARDWAJ, A.; JONES, S. Z.; KALANTAR, N.; et al. Additive manufacturing processes for infrastructure construction: A review. Journal of Manufacturing Science and Engineering, v. 141, n. September, p. 1–13, 2019.
BONET, A.; MEIER, C.; SAORÍN, J. L.; DE LA TORRE, J.; CARBONELL, C. Tecnologías de diseño y fabricación digital de bajo coste para el fomento de la competencia creativa. Arte, Individuo y Sociedad, v. 29, n. 1, p. 85–100, 2017.
BUCHANAN, C.; GARDNER, L. Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges. Engineering Structures, 2019. DOI: https://doi.org/10.1016/j.engstruct.2018.11.045
BULL, G.; HAJ-HARIRI, H.; ATKINS, R.; MORAN, P. An educational framework for digital manufacturing in schools. 3D Printing and Additive Manufacturing, v. 2, n. 2, p. 42–49, 2015. DOI: http://online.liebertpub.com/doi/10.1089/3dp.2015.0009
CAIRNS, D. R.; CURTIS, R.; SIERROS, K. A.; BOLYARD, J. J. Taking professional development from 2D to 3D: Design-based learning, 2D modeling, and 3D fabrication for authentic standards-aligned lesson plans. Interdisciplinary Journal of Problem-based Learning, v. 12, n. 2, p. 9–12, 2018.
ÇELIK, A.; ÖZDEMIR, S. Tinkering learning in classroom: an instructional rubric for evaluating 3D printed prototype performance. International Journal of Technology and Design Education. n. 0123456789, 2019. DOI: https://doi.org/10.1007/s10798-019-09512-w
CHIU, P. H. P.; LAI, K. W. C.; FAN, T. K. F.; CHENG, S. H. A pedagogical model for introducing 3D printing technology in a freshman level course based on a classic instructional design theory. In: FRONTIERS IN EDUCATION CONFERENCE, 2015, El Paso. Proceedings[...]. IEEEE, 2015. p.1–6. DOI: https://doi.org/10.1109/FIE.2015.7344287
ELMÔR FILHO, G.; SAUER, L. Z.; ALMEIDA, N. N. DE; VILLAS-BOAS, V. Uma nova sala de aula é possível: Aprendizagem ativa na educação em engenharia. 1o ed. Rio de Janeiro: LTC, 2019.
FAN, F.; WO, S.; IM, T.; et al. A project-problem based learning approach for appreciating ancient cultural heritage through technologies. In: IEEE INTERNATIONAL CONFERENCE ON TEACHING, ASSESSMENT, AND LEARNING FOR ENGINEERING (TALE), 2016, Bangkok. Proceedings [...]. IEEE, 2016. p. 65–69. DOI: https://doi.org/10.1109/TALE.2016.7851772
FERNANDES, S. C. F.; SIMOES, R. Collaborative use of different learning styles through 3D printing. In: INTERNATIONAL CONFERENCE OF THE PORTUGUESE SOCIETY FOR ENGINEERING EDUCATION (CISPEE), 2., 2016, Vila Real, Portugal. Proceedings [...]. v. 63, p.1–8, 2016.
FORD, S.; MINSHALL, T. Invited review article: Where and how 3D printing is used in teaching and education. Additive Manufacturing, v. 25, n. October 2018, p. 131–150, 2019. DOI: https://doi.org/10.1016/j.addma.2018.10.028
FUKUDA, T.; TOKUHARA, T.; YABUKI, N. A dynamic physical model based on a 3D digital model for architectural rapid prototyping. Automation in Construction, v. 72, p. 9–17, 2016. DOI: http://dx.doi.org/10.1016/j.autcon.2016.07.002
GATTO, A.; BASSOLI, E.; DENTI, L.; IULIANO, L.; MINETOLA, P. Multi-disciplinary approach in engineering education: learning with additive manufacturing and reverse engineering. Rapid Prototyping Journal, n. June, p. 598–603, 2015.
GHAFFAR, S. H.; CORKER, J.; FAN, M. Additive manufacturing technology and its implementation in construction as an eco-innovative solution. Automation in Construction, v. 93, n. October 2017, p. 1–11, 2018.
GO, J.; HART, A. J. A framework for teaching the fundamentals of additive manufacturing and enabling rapid innovation. Additive Manufacturing, v. 10, p. 76–87, 2016. DOI: http://dx.doi.org/10.1016/j.addma.2016.03.001.
GREENHALGH, S. The effects of 3D printing in design thinking and design education. Journal of Engineering, Design and Technology, v. 14, n. 4, p. 752–769, 2016.
HAAVI, T.; TVENGE, N.; MARTINSEN, K. CDIO design education collaboration using 3D-desktop printers. In: CIRP DESIGN CONFERENCE, 28., 2018, Nantes. Proceedings [...]. Elsevier Procedia CIRP, v. 70, 2018. p. 325–330. DOI: https://doi.org/10.1016/j.procir.2018.03.277.
HUANG, T. C.; LIN, C. Y. From 3D modeling to 3D printing: Development of a differentiated spatial ability teaching model. Telematics and Informatics, v. 34, n. 2, p. 604–613, 2017. DOI: http://dx.doi.org/10.1016/j.tele.2016.10.005
HULEIHIL, M. 3D printing technology as innovative tool for math and geometry teaching applications. IOP Conference Series: Materials Science and Engineering, v. 164, 2017.
JUNK, S.; MATT, R. New approach to introduction of 3D digital technologies in design education. In: DESIGN CONFERENCE INNOVATIVE PRODUCT CREATION, 25., 2015, Haifa, Israel. Proceedings [...]. Elsevier Procedia, v. 36, 2015. p.35–40. DOI: https://doi.org/10.1016/j.procir.2015.01.045
JUNK, S.; MATT, R. Workshop Rapid Prototyping - A new approach to introduce digital manufacturing in engineering education. In: INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY BASED HIGHER EDUCATION AND TRAINING, 2015, Lisboa. Proceedings [...]. IEEE, 2015a. p.1–6. DOI: https://doi.org/10.1109/ITHET.2015.7217965
KADHIM, N. M. S. M. New Technologies and Their Impact on the Development of Architectural Education. In: INTERNATIONAL SCIENTIFIC CONFERENCE OF ENGINEERING SCIENCEs, 1.; SCIENTIFIC CONFERENCE OF ENGINEERING SCIENCE (ISCES), 3., 2018, Diyala. Proceedings[...]. IEEE, 2018. p. 231–236. DOI: https://doi.org/10.1109/ISCES.2018.8340559
KIANIAN, B.; TAVASSOLI, S.; LARSSON, T. C.; DIEGEL, O. The adoption of additive manufacturing technology in Sweden. In: GLOBAL CONFERENCE ON SUSTAINABLE MANUFACTURING – DECOUPLING GROWTH FROM RESOURCE USE, 13., 2015, Binh Duong New City – Vietnam. Proceedings[...]. Elsevier Procedia CIRP, v. 40, 2016. p. 7–12. DOI: http://dx.doi.org/10.1016/j.procir.2016.01.036
LUDWIG, P. M.; NAGEL, J. K.; LEWIS, E. J. Student learning outcomes from a pilot medical innovations course with nursing, engineering, and biology undergraduate students. International Journal of STEM Education, v. 4, n. 1, 2017.
LUNA, A.; CHONG, M. How to motivate the interest in Physics to Engineering students without dying in the attempt? In: IEEE WORLD ENGINEERING EDUCATION CONFERENCE (EDUNINE), 2018, Buenos Aires. Proceedings [...]. IEEE, 2018. p. 1–5. DOI: https://doi.org/10.1109/EDUNINE.2018.8450949
LYNN, R.; SALDANA, C.; KURFESS, T.; et al. Toward Rapid Manufacturability Analysis Tools for Engineering Design Education. In: NORTH AMERICAN MANUFACTURING RESEARCH CONFERENCE (NAMRC 44), 44., 2016, Blacksburg. Proceedings[...]. Elsevier Procedia Manufacturing, v. 5, 2016. p. 1183–1196. DOI: http://dx.doi.org/10.1016/j.promfg.2016.08.093
MARTINS, I. L.; PEREIRA FILHO, Z. R. A produção acadêmica sobre a fabricação digital nas escolas brasileiras de arquitetura e urbanismo. PARC Pesquisa em Arquitetura e Construção, v. 10, p. e019007, 2019.
MENOLD, J.; JABLOKOW, K.; SIMPSON, T. Prototype for X (PFX): A holistic framework for structuring prototyping methods to support engineering design. Design Studies, v. 50, p. 70–112, 2017. DOI: http://dx.doi.org/10.1016/j.destud.2017.03.001
MINETOLA, P.; IULIANO, L.; BASSOLI, E.; GATTO, A. Impact of additive manufacturing on engineering education - Evidence from Italy. Rapid Prototyping Journal, v. 21, n. 5, p. 535–555, 2015.
NEMORIN, S.; SELWYN, N. Making the best of it? Exploring the realities of 3D printing in school. Research Papers in Education, v. 32, n. 5, p. 578–595, 2017.
NÓBREGA, P. G. B. DA; NÓBREGA, S. H. S. DA. Engenheiro Civil X Arquiteto: Conflito No Aprendizado Das Estruturas. Revista de Ensino de Engenharia, v. 39, n. 1, p. 183–191, 2020.
NOVAK, E.; WISDOM, S. Effects of 3d printing project-based learning on preservice elementary teachers’ science attitudes, science content knowledge, and anxiety about teaching science. Journal of Science Education and Technology, v. 27, n. 5, p. 412–432, 2018.
PELLEGRINO, J. W.; HILTON, M. L. Education for life and work: Developing transferable knowledge and skills in the 21st century. 2013.
PÉREZ-PÉREZ, M. P.; GÓMEZ, E.; SEBASTIÁN, M. A. Delphi prospection on additive manufacturing in 2030: Implications for education and employment in Spain. Materials, v. 11, n. 9, 2018.
PIETERSE, F. F.; NEL, A. L. The advantages of 3D printing in undergraduate mechanical engineering research. In: IEEE GLOBAL ENGINEERING EDUCATION CONFERENCE (EDUCON), 2016, Abu Dhabi. Proceedings[...]. IEEE, 2016. p.25–31. DOI: https://doi.org/10.1109/EDUCON.2016.7474526
PIRES, M. F. DE C. Multidisciplinaridade, interdisciplinaridade e transdisciplinaridade no ensino. Interface - Comunicação, Saúde, Educação, v. 2, n. 2, p. 173–182, 1998.
SAORÍN, J. L.; MELIAN-DÍAZ, D.; BONNET, A.; et al. Makerspace teaching-learning environment to enhance creative competence in engineering students. Thinking Skills and Creativity, v. 23, p. 188–198, 2017. DOI: http://dx.doi.org/10.1016/j.tsc.2017.01.004
SCHELLY, C.; ANZALONE, G.; WIJNEN, B.; PEARCE, J. M. Open-source 3-D printing technologies for education: Bringing additive manufacturing to the classroom. Journal of Visual Languages and Computing, v. 28, p. 226–237, 2015. DOI: http://dx.doi.org/10.1016/j.jvlc.2015.01.004
SCHNIEDERJANS, D. G.; YALCIN, M. G. Perception of 3D-printing: analysis of manufacturing use and adoption. Rapid Prototyping Journal, v. 3, n. May 2017, p. 510–520, 2018.
SMITH, C. J.; MAHONEY, P. S.; TODD, I. 3D printing a jet engine: An undergraduate project to exploit additive manufacturing now and in the future. Materials Today Communications, v. 16, n. March, p. 22–25, 2018. DOI: https://doi.org/10.1016/j.mtcomm.2018.03.006
SONG, M. J. Learning to teach 3D printing in schools: how do teachers in Korea prepare to integrate 3D printing technology into classrooms? Educational Media International, v. 55, n. 3, p. 183–198, 2018.
SONG, M. J. The application of digital fabrication technologies to the art and design curriculum in a teacher preparation program: a case study. International Journal of Technology and Design Education, 2019.
STAVRIDI, S. Reforming abstract geometrical ideas through 3D printing: A proposal for experiential e-Making technology in creative education. In: IEEE INTEGRATED STEM EDUCATION CONFERENCE (ISEC), 7., 2017, Princeton. Proceedings [...]. IEEE, 2017. p.10–16. DOI: https://doi.org/10.1109/ISECon.2017.7910218
STERN, A.; ROSENTHAL, Y.; DRESLER, N.; ASHKENAZI, D. Additive manufacturing: An education strategy for engineering students. Additive Manufacturing, v. 27, n. March, p. 503–514, 2019. DOI: https://doi.org/10.1016/j.addma.2019.04.001.
TRUST, T.; MALOY, R. W. Why 3d print? The 21st-century skills students develop while engaging in 3d printing projects. Computers in the Schools, v. 34, n. 4, p. 253–266, 2017. DOI: https://doi.org/10.1080/07380569.2017.1384684.
TSONGAS, K.; TZIMTZIMIS, E.; SYMEONIDOU, I.; et al. Computer aided design and 3D printing for STEAM education: a technical reference guide for teachers. In: PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH-ENERGY PHYSICS EXPERIMENTS, 2018, Wilga. Proceedings [...]. SPIE, v. 1080854, 2018. p.1-9. DOI: https://doi.org/10.1117/12.2504296
VERNER, I.; MERKSAMER, A. Digital design and 3D printing in technology teacher education. In: DESIGN CONFERENCE INNOVATIVE PRODUCT CREATION, 25., 2015, Haifa, Israel. Proceedings [...]. Elsevier Procedia, v. 36, 2015. p.182–186. DOI: http://dx.doi.org/10.1016/j.procir.2015.08.041
VIOLANTE, M. G.; VEZZETTI, E. Guidelines to design engineering education in the twenty-first century for supporting innovative product development. European Journal of Engineering Education, v. 42, n. 6, p. 1344–1364, 2017.
VIRGIN, L. Enhancing the teaching of linear structural analysis using additive manufacturing. Engineering Structures, v. 150, p. 135–142, 2017. DOI: http://dx.doi.org/10.1016/j.engstruct.2017.07.054
VRANICH, A. Reconstructing ancient architecture at Tiwanaku, Bolivia: the potential and promise of 3D printing. Heritage Science, v. 6, n. 1, p. 1–20, 2018. Springer International Publishing. DOI: https://doi.org/10.1186/s40494-018-0231-0
WANG, C.; YAP, J. B. H.; LI, H.; et al. Topographical survey engineering education retrofitted by computer-aided 3D-printing. Computer Applications in Engineering Education, v. 26, n. 6, p. 2116–2130, 2018.
WONG, A.; PARTRIDGE, H. Making as Learning: Makerspaces in Universities. Australian Academic and Research Libraries, v. 47, n. 3, p. 143–159, 2016.
WU, P.; ZHAO, X.; BALLER, J. H.; WANG, X. Developing a conceptual framework to improve the implementation of 3D printing technology in the construction industry. Architectural Science Review, v. 61, n. 3, p. 133–142, 2018.
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 SIMPÓSIO BRASILEIRO DE TECNOLOGIA DA INFORMAÇÃO E COMUNICAÇÃO NA CONSTRUÇÃO
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Adota-se Atribuição 4.0 Internacional (CC BY 4.0). Ver detalhamento em https://creativecommons.org/licenses/by/4.0/deed.pt_BR